
HIGH-PRESSURE X-RAY CRYSTALLOGRAPHY AND

CORE HYDROPHOBICITY OF T4 LYSOZYMES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Marcus David Collins

January 2006



This document is in the public domain.



HIGH-PRESSURE X-RAY CRYSTALLOGRAPHY AND CORE

HYDROPHOBICITY OF T4 LYSOZYMES

Marcus David Collins, Ph.D.

Cornell University 2006

While a great many protein structures are now known, considerably less is known

experimentally about how these molecules reversibly fold and unfold into nearly

unique, active structures. For more than 50 years, the central hypothesis has been

that micro-scale phase separation between oil-like non-polar and charged or po-

lar amino acid residues drives the formation of a “hydrophobic” protein core. A

great deal of evidence supports this hypothesis, but the unfolding of proteins as a

response to pressure contradicts it. A possible solution is the suggestion that pres-

sure induced unfolding is a different process from thermally or chemically driven

unfolding. Separately, little is known about the structural response of proteins to

pressure, although pressure has clear and sometimes large effects on protein activ-

ity and stability. For these reasons, we have chosen to study the cavity-containing

mutant L99A of T4 Lysozyme, along with the wild-type protein, under pressures

up to 2 kbar, a compression of about 0.1%. The protein is remarkably incompress-

ible, and the presence of a cavity has almost no impact on the pressure response

over the wild-type lysozyme. Instead, four water molecules cooperatively fill the

cavity, interacting with each other and the protein roughly equally. We believe the

cavity to be half full with water near 2 kbar, suggesting that despite its hydrophobic

nature, the interior of a protein maintains strong electrostatic interactions.
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LIST OF SYMBOLS

A comment on notation. Any document must choose some way of organizing
its symbols. The following table lists verbatim as many symbols as feasible that
are used in this text, standard and otherwise. However, I have tried to adhere to
a few conventions which will help the reader and prevent them from constantly
referring to this table. Vectors are universally denoted in italic boldface, e. g. x.
Note, however, that it is the convention of this thesis to denote sets of scalars as
vectors. This may lead to confusion primarily in sets of structure factor amplitudes.
Thus, F is a set of structure factor amplitudes, not a single, complex structure
factor. Similarly Fh is just the amplitude, with the sans-serif h referring to a
particular point in reciprocal space. Only when using the notation F (Q) should
the reader understand this to mean the complex structure factor at a point in three
dimensional reciprocal space denoted by the vector Q.

Subscripts indicate either an integer index, a set of integer indices (as with
h ≡ {h, k, l}, where h, k, l are integers) or indicate a class of variable, e. g. Fo is an
observed structure factor amplitude.

Care should be taken to note the font of both the symbol and its subscripts.
There are only so many letters in the Greek and Roman alphabets, so a sans-
serif symbol (e. g. D) should be read as distinct from a Roman (D), italic (D), or
boldface (D) symbol, and so on. Boldface and sans-serif symbols generally, but not
always, denote matrices. Roman letters are most often used for units, elements,
etc. Italic letters generally, but not always, indicate simple scalar variables. In
special contexts they may denote complex numbers.

Finally, some symbols are not to be taken as only one character. For instance,
g and g(r) do not refer to the same thing at all. Context is unavoidably important,
so the reader must not use this table blindly.

Please note that the symbol you seek may instead be listed in the previous table
of abbreviations. The character ∆ is generally used to denote a change, and so is
not used for alphabetization here; thus ∆γ would be listed under ‘g’ for gamma,
the latinized spelling of the Greek letter γ.

∗ Denotes a complex conjugate
<> Denotes an average, type depending on context
∇ The gradient operator
∂ Partial derivative operator
◦ The convolution operator: A ◦B =

∫

A(x)B(y − x)dx
∅ The empty or null set
⇐⇒ , iff If and only if
Aij Lennard Jones parameter for interactions between ith and jth atoms
ai Integers
αc Structure factor phases calculated from a model
B Crystallographic “temperature” factor, Debye-Waller factor
∆B Error in model temperature factors
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Bave Average crystallographic temperature factor
Bij Lennard Jones parameter for interactions between ith and jth atoms
β The inverse of temperature times Boltzmann’s constant, 1/kBT
C Completeness, percentage of theoretical

diffraction spots actually observed
C The covariance matrix of parameter estimation and model fitting
∆CP Change in heat capacity
χ2 Goodness-of-fit
D Debye, unit of dipole moments = 3.355×10−30 Coulomb meters
D < exp[−(∆Bs2/4)] cos 2πs∆x >
D Curvature matrix
Dij Components of the distance difference matrix, Eqn. 5.3
d Real-space distance between Bragg diffracting planes
δ Change in unit cell lengths
δij Kronecker δ-function, equal to 1 iff i = j, zero otherwise
∆E Internal energy difference of two states, often with a subscript

indicating a specific contribution
ε Dielectric constant
εi Real space basic vectors of a lattice
ε∗i Reciprocal space basic vectors of a lattice
ε Multiplicity of a diffracted reflection
F Denotes a Fourier transform
F (Q) Complex structure or scattering factor at reciprocal space position Q

F c,F o Vectors of calculated or observed x-ray scattering amplitudes
Fp Structure factors calculated from a partial (incomplete) atomic model
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Chapter 1

Introduction

In the last ten years the determination of a protein structure has become almost

routine, at least if crystals of the protein can be grown. Concurrently, it has

become clear that the old adage structure equals function must be revised. Even

with a structure in hand, much work is necessary to understand how a protein

functions. New methods are needed to elucidate how proteins function, and the

ideas that have guided us thus far will need revision.

My work has attacked the problem of protein structure by examining the re-

sponse to pressure of a cavity-containing mutant of T4 Lysozyme. To start this

story, I want to ask three questions. First, why should I want to apply pressure

to a protein? Why have I chosen to study a cavity-containing lysozyme? Finally,

what motivated the use of crystallography in these experiments?

Once these questions are answered, I will examine in some detail the hydropho-

bic model of protein structure and folding. Since my experiment is simply to make

a thermodynamic perturbation to a protein, we need to first understand the basic

thermodynamic properties of proteins. We also need to see where present models

fail to explain the available data, which will provide the final motivation for my

experiments.

1.1 Why pressure?

Our intuitive experience with biology is limited to one atmosphere, but an enor-

mous fraction of the biosphere is at a large hydrostatic pressure. Earth’s oceans

have a pressure gradient of roughly 1 bar per 10m depth, due simply to the weight

1
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of water above. The average pressure of the ocean floor is roughly 380 bar and life

is found in some of the ocean’s deepest trenches where pressures exceed 1 kbar[1, 2].

That life can survive under such extreme conditions is itself fascinating.

We need not invoke extreme biological conditions to see that pressure is a

useful tool. Pressure, like any thermodynamic variable, can be used to perturb a

system and study its underlying properties. So while pressure may seem remote

to life at one atmosphere, it is in fact little different from chemical concentration

or temperature.

1.1.1 Pressure effects on proteins

The first pressure experiment on a protein appears to have been the denaturation

of albumin from eggs, by P.W. Bridgman, in 1914[3]. Since that time a great

amount of work has been done.

Pressure has been implicated in a variety of functional changes for proteins[4,

5]. It has been shown to reverse anasthesia[6]. Almost all proteins unfold under

modest pressures[7]. Pressure affects the spectroscopic[8] and kinetic properties of

proteins[2, 5].

The compressibility of proteins is quite small, so that at 1 kbar a typical protein

compresses only 0.1 to 1%[9]. How is it that such small changes can have such

large effects on proteins? Proteins are classic soft systems with many internal

degrees of freedom. Soft systems have energy landscapes with many energy levels

spaced closely together[10]. Even near the true lowest energy state there is a large

density of states which samples a significant conformational space. Moreover, the

functional states of the molecule are also low lying relative to the true ground

state. Thus seemingly small thermodynamic perturbations can significantly affect
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protein behavior.

1.1.2 Pressure as a thermodynamic variable

In all cases in this work, pressure will be applied to proteins which are surrounded

by water–even in the protein crystals described in later chapters, liquid water

surrounds the well ordered proteins in the crystal. Thus even though the proteins

in the unit cell of such a crystal are in different orientations, the surrounding water

ensures hydrostatic conditions and eliminates the problem of pressure gradients in

the system. We wish to lay out the basic thermodynamics of such systems.

Under conditions of prescribed temperature and pressure, the relative probabil-

ities p0/p1 of a system being in two given states (denoted 0, 1) may be determined

from the relative free energies of those states, namely,

p0

p1

= e−β∆G, (1.1)

where β is the familiar 1/kBT temperature factor (kBT ≈ 2.5 kJ/mol at room

temperature) and ∆G is the difference in pressure and temperature dependent

Gibbs free energies of the two states,

∆G = ∆E − T∆S + p∆V. (1.2)

∆E and ∆S are the differences in internal energy and entropy of the two states.

We are here most concerned with last term p∆V , the pressure multiplied by the

change in volume of the total system, which includes both the proteins and their

surrounding water. There may be (sometimes important) pressure dependences of

both ∆S and ∆E.

The kinetics of transitions between the two states may be affected by pressure
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in an analagous fashion:

∂ ln k

∂p

∣

∣

∣

∣

T

= −∆V ‡

RT
, (1.3)

where k is a reaction rate corresponding to a transition between two states sepa-

rated by a transition state with activation volume ∆V ‡.

Pressure favors states of our total system with smaller volumes and speeds re-

actions with transition states smaller than the initial state. A perhaps more subtle

point is that in some sense pressure has an effect opposite to that of temperature.

While increasing temperature favors states of larger entropy (that is, more atomic

wiggling about), increasing pressure favors states of lower volume (most likely less

atomic wiggling about). Pressure tends to decrease the volume of a system while

temperature tends to increase the system’s volume. This analogy is limited since

temperature plays a critical role in determining the distribution of states regardless

of the details of pressure, volume, or entropy, and because pressure will potentially

change ∆S and ∆E. Nonetheless, it is a useful rule of thumb.

Another use of pressure is to observe the “soft” modes of a system. In proteins

these might be implicated in protein function (for instance, see the work on hen

egg-white lysozyme by Kundrot and Richards[11, 12] or more recently by Refaee

et al.[13], and the work by Paul Urayama on myoglobin[9, 14].) Computer simu-

lation has shown that the T4 lysozyme active site (to be discussed briefly below)

fluctuates strongly[15]. Such fluctuations may correspond to fluctuations in the

total system volume, which is related to the isothermal compressibility κT by

< V− < V >>2= kBTκTV, (1.4)

where V is the system volume. We might then expect regions of high compress-

ibility to be related to functional modes of the protein.
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Perhaps most importantly, pressure can help us explore states which, while

normally inaccessible, are nonetheless interesting for understanding protein stabil-

ity and function. Much debate has arisen over the role of water in cavities or in

the hydrophobic cores of proteins. While the unfavorable interactions of non-polar

“hydrophobic” parts of a protein and water are thought to be the principal driving

force in protein folding[16], these interactions remain poorly understood. Walter

Kauzmann has pointed out more than once[17, 18] that the hydrophobic model

has serious flaws when we consider its pressure behavior (see below). This question

is especially topical as the focus of protein folding theory and experiment turns to

the the role of water in folding and structure prediction[19–23].

In the absence of a consensus in the theory, it is especially important to under-

stand empirically the interactions of water with the various amino acids comprising

protein molecules. While a temperature experiment may tend to increase the like-

lihood of water penetration into the core, thus permitting a measurement of the

associated free energy, it is more likely to first denature the protein. At the very

least, any substantial increase of temperature will disrupt the protein structure,

making interpretation of the experiment in terms of the original structure more dif-

ficult. Finally, temperature and chemical perturbations frequently damage protein

crystals.

Pressure allows us a wider working range than other thermodynamic probes.

Proteins retain their native structure over a wide enough pressure range (generally

1 to several kilobar) to observe interesting phenomena besides unfolding, such as

spectroscopic changes associated with ligand binding (e.g. [8].) Pressure does not

damage crystals as readily as temperature or chemical perturbations[9, 12, 14, 24].

Increasing pressure may favor the hydration of the protein interior in general,
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something to be discussed later in this chapter. Similar statements can be made

about, for instance, the spectroscopic states of oxygen binding proteins and their

relation to structure[8]. By favoring states which are important to protein function

or structure, but are only transient or minimally populated at ambient conditions,

we can learn a great deal about the molecule. By using pressure, we can favor

these states with minimal perturbation to the overall structure of the protein.

How much can we favor these relevant but depopulated states with pressure?

That is, “What is ∆V ?” There is no a priori answer to this question. Yet much is

already known about the volumetric properties of proteins and related molecules.

1.1.3 Volume properties of proteins

Proteins are covalently linked polymers. Their folded structures are stabilized by

a combination of hydrogen bonds, disulfide and ionic “bridges” between parts of

the chain, steric constraints of the backbone and side chains, and by hydrophobic

effects[16, 25]. This last is most important, but least understood, and we will

return to it often.

Covalent bonds are least susceptible to pressure effects, as their ∆V of forma-

tion is small[4]. Similarly, hydrogen bond formation has a small associated change

in volume. We will not be concerned with these in our work.

Dissociation of salts into ions, or the ionization of amino acid residues of a

protein, are all associated with non-trivial volume changes[26]. The ionized species

always have a lower volume, due to charge-dipole interactions which constrain the

fluctuations of bulk water. Since pressure can therefore affect the pKa values1 of

buffers, we must carefully choose buffers for high-pressure biological experiments.

1The acid dissociation constant for the buffer.
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Table 1.1 lists ∆V for various biochemical reactions.

Similarly important to our work is the pressure effect on hydrophobic interac-

tions. While the details of the hydrophobic effect should be saved for later, it is

interesting to note that transfer of hydrocarbons from their neat liquids or simple

organic solvents into water at standard temperature and pressure has a large, neg-

ative volume[17, 18]. As the pressure of the system increases, this volume becomes

less negative, until finally it becomes positive, usually in the range of 1 to a few

kilobar.

1.2 Selecting probes for high pressure experiments

A wide array of probes have been used to study proteins at high pressure, includ-

ing nuclear magnetic resonance (NMR)[28, 29], fluorescence, small angle x-ray or

neutron scattering (SAXS/SANS)[30, 31], fourier transform infrared spectroscopy

(FTIR)[2, 9, 30], and optical spectroscopy[8]. What are the advantages and dis-

advantages of crystallography relative to these other probes?

The power of NMR to solve protein structures continues to grow[32, 33]. But

for now it is perhaps best suited to studying dynamics, such as the access of sol-

vent to the backbone studied by 1H/2H exchange studies (e. g. [34]), dynamics of

side chains[33, 35], or of fluctuations of the backbone (as in ubiquitin[36]). As a

structural technique it is more limited. Its weakness lies in that one only measures

distances between spin-labelled groups in the protein. There is frequently little

or no orientation information, and usually a high constraint to observation ratio

is needed to solve a structure. The protein must also be specially prepared; in

dynamics studies for instance, side-chain methyl groups must be uniformly sub-
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Table 1.1: Volume changes associated with various biochemical reactions. hy-

drophobic refers to disocciation of hydrophobic solutes; unfolding refers to protein

unfolding. Adapted from [1, 9] and [27].

Reaction type Reaction ∆V @ 25◦ C

ml/mol

ionic H+ + OH− → H2O 21.3

HPO2−
4 + H+ → H2PO−

4 24.0

protein-COO− + H+ → protein-COOH 10

protein-NH+
3 + OH− → protein-NH2 + H2O 20

H-bonding poly(L-Lysine) → helical poly(L-Lysine) -1.0

poly(A + U) → helical poly(A + U) 1.0

hydrophobic methane (CH4) in hexane → CH4water -22.7

unfolding myoglobin (pH 5, 20◦ C ≈ 3.5 kbar) -98

WT T4 lysozyme (pH 3.6, ambient P and T ) -30
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stituted by 13C methyls, without substituting other carbon atoms. Nonetheless it

remains the only way to solve a structure in solution, rather than in a crystal. I

also find it to be the most convincing method for observing dynamics in a real

protein.

UV fluorescence or absorbance is often used to probe global structure of a pro-

tein, usually through the fluorescence shift upon exposing aromatic side chains,

such as tryptophan, to water after unfolding[37]. SAXS/SANS experiments ob-

serve changes in global structure by measuring the radially averaged density auto-

correlation function, from which the radius of gyration of a protein can be derived

(e.g. [20, 31]). FTIR experiments monitor secondary structure and occasionally

other properties of proteins[38]. In all cases the experiments are relatively straight-

forward, but provide limited information.

Optical spectroscopy is exceptionally useful to study ligand binding if a signal

is present, as for CO or oxygen binding in hemoglobin[8], or in the many fluores-

cent proteins now available. Ligands can also help to assay unfolding, e. g. the

spectroscopic shift of a heme group upon unfolding of the surrounding protein in

metmyoglobin[17].

All of these techniques are useful probes of the general structure of a molecule,

but lack detail. Which helix unfolded? Was the tryptophan UV fluorescence

quenched by some other mechanism?

Current thinking suggests that protein function is conferred first by structure

and then by the fluctuations of that structure. Proteins are miniature machines.

To understand the function of proteins, we must understand exactly which atoms

are going where. Probing the structure with less than direct means is akin to a

mechanic attempting to diagnose your car’s problems by looking at the color of
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the exhaust. It is possible, even aesthetically pleasing, but difficult and prone to

error.

It has become increasingly possible to simulate protein molecules on the com-

puter, and to compare results of simulations with experimentally determined pa-

rameters such as the radius of gyration[31] or noble gas binding constants[15, 39].

This places an additional demand on the experimentalist, namely to put the sim-

ulation to a full test by directly determining atomic coordinates. Especially in

pressure experiments, crystallography allows us to directly observe local compress-

ibilities, deformations, and volumes. (How small a disturbance we may accurately

detect is a question for Chapters 4 and 5.) Simulations and other models may then

be tested directly.

Crystallography also provides us with the ability to the appearance of bound

ligands or water molecules which attach to a protein in response to some thermo-

dynamic impetus. Even other structural techniques may struggle to see something

that is not part of the original atomic model. X-ray diffraction data, by directly

sampling the electron density, can in the final stages of refinement highlight ar-

eas where there is something missing from the model. We will find this fact very

important in the analysis of T4 lysozyme under pressure.

Crystallography does have limits. The very nature of the experiment precludes

any direct knowledge of unfolding processes or the unfolded state. Despite some

inferences that can be made about dynamics from thermal B-factors, it remains a

static technique2. Pressure allows us to push these limits somewhat. By combining

Equation 1.4 with parts of the protein identified by crystallography to deform

2Though this is changing as new theoretical and experimental crystallographic
methods gain more of a following.
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very little under pressure, we may identify parts whose fluctuations are large in

the folded state. These regions may provide insight into unfolding or functional

processes.

1.3 T4 lysozymes

We are concerned here with guiding principles of protein structure and function,

not with the particulars of a given molecular or biochemical system. It is important

to choose a system which is representative yet straightforward to work with, already

well characterized, and a protein which we believe will respond to pressure in some

interesting fashion.

I have chosen bacteriophage T4 lysozyme. This enzyme is produced by Es-

chericia coli following infection with bacteriophage T4[40]. Late in infection, it

cleaves cell wall saccharide bonds, allowing replicate phage particles to escape and

continue infecting other bacteria[41]. Its functional purpose is similar to that of

the more familiar hen egg white lysozyme (HEWL), although its activity against

various cell walls differs from HEWL.

The structure of T4 lysozyme was first solved by Brian Matthews[40], and is

similar in some respects to HEWL. The structure is shown schematically in Figure

1.1. There are two domains, one a mix of β-sheet and α-helix (herein the N-

terminal domain), the second a bundle of α-helices comprised of residues 1-13 and

80-162 (the C-terminal domain.) The active site rests more or less between these

two domains, and a long α-helix connects them.
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Figure 1.1: Schematic structure of wild-type phage T4 lysozyme, showing ten α-

helices, a β-sheet (in yellow), and loops. In this view, we are facing the active

site (between the β-sheet and the C-terminal domain (green). PDB code 1L63,

available from www.rcsb.org.
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1.3.1 Structural and thermodynamic studies

A dizzying array of studies have explored the structural stability and activity of T4

lysozyme. Early work suggested that residues far from the active site could affect

activity[42]. Site-directed mutagenesis, beginning with Thr157→Ile[43], has pro-

vided a wealth of structural and thermodynamic information about this molecule.

That first study showed that this one mutation could lower the unfolding temper-

ature of the molecule by more than 10 degrees Celsius. Some substitutions affect

stucture but (surprisingly) not stability, such as mutations of Proline 86[44]. Oth-

ers affect stability by improving hydrophobic interactions[45], or by introducing

charges or dipoles which interact with helix dipole moments[46].

This last case is an interesting example of rational design of proteins. Aspartic

acid residues were substituted for native residues at the N-terminal ends of two

helices B and J. The authors chose mutations based on sites in the crystal structure

where substitutions would not be hindered sterically. The negative charge of these

acidic residues interacts with the intrinsic electrostatic dipole moment of the helix,

reducing the internal energy.

In this work we are continuing studies of cavity containing mutants originally

produced to study hydrophobic interactions that stabilize the protein interior. As

mentioned above the free energy of forming a cavity has a volume dependent part

p∆V , but also a change in internal energy ∆E, and in principle a change in the en-

tropy of neighboring side chains. Originally only a few mutants were produced[47],

but they were followed by more extensive studies[48, 49]. Many of these mutants

were found by crystallography to collapse partially or even completely and with

a range of thermodynamic and structural effects[47–49]. In the case of the Leu99
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→ Ala (L99A) mutant studied here, the cavity is actually slightly larger than one

would predict by removing the corresponding atoms out of a computer model of

the wild type protein.

There are a number of caveats, but the major conclusion from these studies

was that the mutation-induced change in Gibbs free energy difference between the

folded and unfolded states ∆∆G is well estimated with two contributions. One

contribution accounts for the difference in free energies of transfer of the original

and subsituted amino acids from a non-polar to polar environment, as from octanol

to water. This depends only on the specific mutation and adds roughly -2 kcal/mol

for the L99A mutation. A second term accounts for non-polar interactions (which

may include changes in entropy, as well as the more obvious loss of Van der Waal’s

interactions), with a value of -22 cal mol−1Å−3[48]. Then, for Leucine to Alanine

substitutions and in the absence of pressure, we have approximately

∆∆G = −2 kcal · mol−1 − (22 cal · mol−1Å−3)∆Vcav, (1.5)

where ∆Vcav is the cavity volume introduced by the mutation L→A. For the L99A

mutant ∆∆G ≈ 8 kBT , which already suggests a great deal about the mechanical

properties of the protein. This energy is quite large, and we cannot imagine a liquid

supporting such a cavity under any positive applied pressure. This observation is

interesting in the context of the debate over whether the interior of a protein is

liquid or solid and will be discussed below and in the final chapter. At a pressure

of 2 kbar (200MPa), we can roughly double the free energy of the cavity:

pNA = 200 MPa × 6.02 × 1023mol−1 ≈ 120 J · mol−1Å−3 ≈ 30 cal · mol−1Å−3

Thus pressurizing this protein should provide an interesting measure of the liquid

versus solid nature of the protein core.
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Another interesting feature of this cavity is its accesibility to the outside solvent

([50] and see below). Might pressure affect this pathway? Might we force water

into the cavity? (The p∆V , ∆Evdw and ∆S terms associated with such an event

are all relevant.) These are obvious questions to ask, both of which are intimately

related to our understanding of protein structure.

1.3.2 T4 lysozyme under pressure

Very little is known about bacteriophage T4 lysozymes under pressure. The noble

gas studies[39] already mentioned were carried out under modest pressures up to

several tens of atmospheres. The results of that work have also been modelled

using molecular dynamics[15]. These studies will be discussed in some detail later.

Here it is good to note that simulation and experiment find the same binding sites

for Xenon, and reasonably good agreement for the occupancy fractions.

The only study above these pressures was by amide hydrogen deuterium ex-

change NMR[34]. In this tedious experiment, the WT* (cysteine free “psuedo

wild-type”) mutant was rehydrated in deuterated water (D2O) and pressurized

at 9 steps between 0.1 and 200 MPa, for a range of times up to about 3 hours.

During this time, deuterons exhange with backbone amide hydrogens, an effect

reflected in the 2D NMR spectra. The samples were then transferred quickly to

an NMR instrument for 15N-1H measurements. By examining the kinetics of the

H-D exchange reaction, some conclusions can be drawn about the conformational

flexibility.

The data are noisy but two main points are clear. The first is that there are

many pathways into the core of the protein, manifested in the lack of correlations

between reaction activation volumes of neighboring residues. Second, and most
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interesting, the activation volumes corresponding to structural rearrangement in

the region of the cavity are almost all small and negative. This may indicate that

water penetration is more routine that we might normally expect.

There are problems with this experiment. Perhaps most difficult is the tacit

assumption that the structure has not changed, implying zero change in chemical

shifts of the 15N NMR spectra. How good an assumption this is remains to be seen.

Also, the activation volume determined from the data is modelled as a combination

of three terms[34],

∆V ‡
obs = ∆Vs + ∆V ‡

kOH
+ ∆VKw

. (1.6)

∆V ‡
kOH

is the activation volume of the exchange reaction itself, and ∆VKw
is the

volume change upon ionizing water3. ∆Vs represents the structural component of

the process. It amounts to an estimate of protein structural change needed to allow

water in prior to exchange. Since the experiment measures ∆V ‡
obs, the accuracy

with which ∆Vs is determined depends on the knowledge of the second and third

terms on the right hand side of Equation 1.6. Constant values are used for both

∆V ‡
kOH

and ∆VKw
. This seems reasonable for ∆VKw

, but we might wonder if ∆V ‡
kOH

varies from site to site, and if so how much. Finally, we are left to wonder how the

results might be different for the L99A mutant.

Pressure perturbation calorimetry has been carried out on T4 lysozyme mu-

tant WT*[27] and on other mutants (private communication of the authors.) This

technique measures the slight changes in heat of unfolding a protein under mod-

est pressures. The most striking finding for us is that the difference of thermal

unfolding volumes is quite similar to the difference in cavity volumes introduced

by mutation. This implies that whatever the unfolding mechanism, the unfold-

3OH− ions dominate over water in the exchange process.
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ing volume does not seem to depend directly on the solvation properties of the

substituted residue. Instead the unfolding volume appears to depend only on the

physical size of the residues. This experiment, despite its name, is not carried out

at large pressures, so it is not sampling the pressure unfolded state, but rather

the volume difference of the folded and thermally unfolded state. We must there-

fore take care not to extrapolate from these results to the high pressures of our

experiments.

1.4 Hydrophobic models and protein folding

The definition of “hydrophobic” is somewhat vague. In fact it describes an extraor-

dinarily broad class of phenomena which are loosely connected by the observation

that certain materials are not easily miscible with water. The most commonly cited

example is the demixing of water and hydrocarbon oils, such as hexane or octanol.

Walter Kauzmann[51] was the first to suggest that perhaps protein structure might

be explained by such phase separation on a microscopic scale. Kauzmann’s obser-

vation has had great success in explaining how and why proteins should rapidly

collapse into a non-random, folded state[16, 25]. The model suggests that the

dominant force in protein folding is the transfer of hydrophobic, low polarizability

amino acid side chains from water to a non-polar environment. Experiment gener-

ally confirms the intuition that non-polar “hydrophobic” residues like Leucine or

Valine are primarily found in solvent inaccessible regions of the protein[16, 52]. The

model successfuly predicts certain features of the entropy and enthalpy of unfold-

ing as a function of temperature[16], but as Kauzmann himself pointed out[17, 18],

it has some curious flaws. Before considering those flaws, we need to understand
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some basics of hydrophobicity.

1.4.1 Hydrophobic solutes in water

Several important features characterize the solvation of small hydrophobic species

such as methane in water. At room temperature, this solvation is disfavored by

a large entropic penalty, and a much smaller enthalpic penalty[16]. Solvation of

small nonpolar species is also associated with a large increase in the heat capacity

of the solution[16]. We will now consider these features, and their temperature

dependence.

The entropic penalty is certainly the most discussed feature of hydrophobicity,

and one which continues to be a matter of heated debate, though there seems to be

little objective doubt as to the nature of this penalty. First note that the concept

of an entropic penalty for mixing is in itself odd. The translational entropy of

mixing is always positive. We must look at other degrees of freedom of water to

find an answer.

In the classic picture, water becomes orientationally ordered, forming a hy-

drogen bonded “clathrate” cage around a hydrophobic solute (e. g. a model from

Harold Scheraga’s group[53, 54] which has recently been revisited[55]). This model

considers the energy levels Ei of a system, where the index i indicates the (integer)

extent of hydrogen bonding of each water molecule. Then one simply calculates the

equilibrium distribution over these energy levels, subject to some reasonable con-

straints. I would disagree with the authors that the agreement with experimental

data is excellent, since for many thermodynamic parameters available experimental

data indicate linear dependence on temperature, while the model has non-linear

temperature dependence. The more recent model[55] does much better in this
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regard.

Such clathrates do in fact form, for instance around methane, but only at

somewhat elevated pressures[56]. (The reasons for this will be discussed later in

this chapter.) While such a clathrate picture can guide a picture of the under-

lying energy levels in the system, it is unclear to me that those energy levels

map back only to a clathrate picture, and whether the energy spectrum used

in the clathrate model[53–55] is realistic. Typically these models are compared

to x-ray and neutron diffraction data (e. g. [57]) though the authors admit there

are large uncertainties in the pair correlation functions derived from that sort of

scattering[55, 57]. Recent XAFS4 experimental evidence, supplemented with com-

puter simulation[58] reveals that the hydration around Krypton in water is not

well modelled by a clathrate picture. Unlike x-ray or neutron measurements, the

XAFS data are in principle easier to interpret, especially when the distribution of

water around a guest solute is the object of study.

I find more recent classical field theories both more elegant and appropriate,

though they are necessarily more complicated. Moreover they do a somewhat

better job of modelling experimental data. I will not review these theories in detail

here, as they involve extensive field-theoretic and information theory calculations,

the details of which will not be important later. Instead I point the reader to

good reviews and applications[56, 59–61]. Lawrence Pratt has written an excellent

review of the subject[62] and two other papers[56, 63] have excellent references.

The goal here is to point out the flavor of the theory, for later comparison to the

situation in our pressure-hydrated protein cavity.

The central question to ask is simple: given the ordinary structure of water,

4X-ray absorption fine structure
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what is the probability of finding a void between water molecules large enough

to insert a solute? In its simplest form, this approach treats all particles as hard

spheres (other interactions can be added in a straightforward manner), but as we’ll

see uses experimental input to distinguish water from other solvents. The distin-

guishing feature of water is in its experimental two-particle correlation function,

an observation that led to the first modern theory of hydrophobicity[64]. Alterna-

tively, the correlation function can be derived from simulation (e. g. , [56, 62]).

It is convenient to write the excess chemical potential of a non-interacting hard

sphere solute in water,

µex = −kBT ln p0 = 4πρkBT

∫ λ

0

G(λr)λ
2
rdλr, (1.7)

where λ = Rcav +RS, the sum of cavity and solvent radii, ρ is the number density

of water, p0 is the probability of the solute volume being empty, and G(λr) is the

“contact value of the solvent density at the surface of the exclusion volume”[56].

(Or, the value of the pair correlation function at the contact radius λr.) Equation

1.7 is at first mysterious, but is easy to derive. Take an empty cavity already of

radius r. Then the probability of a spherical shell around the cavity being empty

is 1− 4πr2ρG(r)dr. The probability that the cavity and the shell are empty is the

product of the two separate probabilities:

p0(r + dr) = p0(r)(1 − 4πr2ρG(r)dr) = p0 +
∂p0

∂r
dr.

This can be recast in the form ∂ ln p0/∂r = −4πr2ρG(r), from which it is trivial

to derive Equation 1.7.

Equation 1.7 describes the radius dependent surface tension of water around

the non-interacting solute. The function G is peaked about some λr. What turns

out to be different about water is not the position of this peak, but its width: it
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is considerably narrower than the peak for a similarly sized nonpolar solvent[62].

A more recent approach[56] matches a simple model for the probablilites pN of

finding N water molecules in the solute volume to known information about the

moments < Nk > (the brackets indicate a thermal average), determined from

Monte Carlo simulation. Others[61] have constructed more traditional theoretical

models as well.

Once the probability p0 is known it can be used to calculate thermodynamic

quantities. In these pictures, the problem is entirely entropic: the excluded volume

of the hard sphere solute limits the density fluctuations of the solvent, and therefore

its entropy. But there is no particular reason to limit ourselves to hard spheres.

Information about interactions is contained in G(λ). Hydrogen bonding further

limits density fluctuations, narrowing the first peak in G(λ) and making solvation

even more unfavorable. Some of the details will be considered below in section

1.4.2.

As the solvent size grows, this fluctuation-entropic picture will eventually fail.

For a sufficiently large spherical cavity, water lining the cavity will no longer be

able to satisfy all of its hydrogen bonding potential. Indeed at this point, the excess

chemical potential of the solute goes from a solute volume dependent regime to

a surface area dependent regime, and the solvation penalty becomes increasingly

enthalpic. One group calculates that the transition between these regimes is near

1 nm, curiously close to the size of hydrophobic groups in proteins[61].

The solvation entropy also has an interesting temperature dependence. For

small hydrophobic solutes, ∆S for transfer from a gas to water nearly converges

to zero near 400K[16, 56, 65]. The information theory model (discussed below

in Section 1.4.2) maximizes the Shannon information entropy contained in the
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probabilities pN of having N water molecules in a given volume. It is able to

predict the entropy convergence reasonably well. This prediction arises again from

the fact that the chemical potential of solvation, Equation 1.7, is almost entirely

determined from properties of the solvent. In particular it has been shown[56] that

the first term in an approximation to equation 1.7 is

µex ≈ Tρ2
bulk(T )x(v) (1.8)

where T is the temperature, ρbulk is the density of water, and x(v) is a function

of solute volume v. Since x(v) only scales µ with no temperature dependence of

its own, µex is peaked at the same temperature for all v. Thus S = −∂µex/∂T

converges to zero at a common temperature for all nonpolar solutes. Including

more terms in the approximate expression 1.8 introduces small changes which

slightly improve the modelling of experimental data[56].

The temperature dependence of entropy is associated with the large increase

in the heat capacity upon solvating nonpolar species in water (denoted ∆Cp),

∆S(T ) = ∆S(TS) +

∫ T

TS

∆CP

T
dT, (1.9)

where TS is often taken to be the temperature of entropy convergence. This implies

a similar temperature dependence of the enthalpy of solvation:

∆H(T ) = ∆H(TH) +

∫ T

TH

∆CP dT, (1.10)

where TH is defined similarly to TS. Among other things, this implies that the

solubility of nonpolar species has a minimum as a function of T , which turns out

to be quite a bit above room temperature[16].
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1.4.2 Hydrophobic interactions

The models discussed above have significant advantages in that they are more

predictive than the old schematic picture of clathrate formation. In particular,

protein folding in a hydrophobic model depends not only on the existence of a free

energy minimum upon phase separation of hydrophobic residues, but on a rela-

tively long-ranged attractive force between hydrophobic groups in water. Tranfer

experiments measure the difference in solubility between an oily solvent (such as

octanol) and water; low solubility of the hydrophobic group in water compared to

oil does not necessarily imply the existence of an attractive interaction between

hydrophobic groups in water. In any case, the form of the interaction is needed if

we are to calculate protein folding kinetics and pathways.

We are interested in the potential of mean force (pmf) between two or more hy-

drophobic groups in water. This pmf is just the free energy of the whole system for

a given configuration of the weakly-interacting, hard sphere “hydrophobic” solutes,

generally plotted against some spatial separation of the hydrophobic objects.

One approach[56, 59], determines the pmf from information theory. Simulation

is used to generate many configurations of water, from which the first and second

moments of the number of water molecules N in a volume v are calculated:

< N > = ρbulkv,

< N(N − 1) > = ρ2
bulk

∫

v

dr

∫

dr′g(|r − r′|).
(1.11)

These quantities constrain the probabilities pN since < Nk >=
∑

N pNN
k. Maxi-

mizing the information entropy represented by the pN , subject to the constraints

in Equation 1.11, yields pN = exp(λ0 +λ1N +λ2N
2). The Lagrange multipliers λi

are chosen to satisfy the moment equations. Other models of the pN are shown to
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model available data and simulations less well.

The key finding from this approach is that there is a solvent-separated minimum

in the pmf, at least for small solutes. The calculation finds two minima in the

potential between two methane molecules, one at 0.39 nm, and a second at 0.73 nm.

This pmf implies that there are attractive “hydrophobic” interactions, but that

they are interrupted by a free-energy barrier which peaks near 0.55 nm separation.

This will be important when we consider pressure unfolding.

The chief limitation of this model is that it assumes Gaussian statistics for

density fluctuations[61], which appears to be a very good estimate for small length

scales, but breaks down at larger length scales. To address this issue, Lum et al[61]

have constructed a theory which treats the slowly varying, long ranged part of the

density fluctuations separately from the short length scale part. This yields some

interesting results.

First, they show that nonpolar, noninteracting plates or cylinders will attract

each other in water, with ranges of tens of Ångstroms. To be clear, they model

a system where in vacuum the plates or cylinders would not interact in any way

(although later they add in explicit polarizability). Thus the observed attraction

is solely a property of water, upon which the plates or cylinders place particular

boundary conditions. Perhaps more interestingly, they find two solutions for the

water density between the hydrophobic objects. They point out that there is a

kinetically frustrated first-order transition between a high- and low-density state

of the water between the hydrophobic surfaces, which they refer to as a drying

transition. In this model, hydrophobic objects lead to decreased density at their

surfaces over some range away from the surface. When these ranges overlap for

two hydrophobic objects, there is higher water density (and pressure) outside than
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in between, and the objects are pressed together. Finally, the model predicts that

the crossover from small-solute to large-solute behavior (discussed above) is near

1 nm.

This model predicts hydrophobic association, at least for sufficiently large ob-

jects (for which Rcav & 0.5 nm in equation 1.7). It may also be useful in under-

standing the pressure-dependent behavior of proteins.

1.4.3 Hydrophobicity in proteins

The most frequent response I get to the question “How do we know that hydropho-

bicity is the driving force behind protein structure and stability?” is that x-ray

crystallography has shown that most hydrophobic residues are buried far from wa-

ter in most proteins. Indeed this is a good observation, and does constitute an

important part of the available evidence[16]. It is not, however, the best evidence.

The thermodynamic properties discussed above give us a good starting point.

Most amazing is the fact that the specific entropy5 of unfolding for proteins

converges to a common value quite near 400K[16, 66]. There is also a concur-

rent convergence of the specific enthalpy of unfolding, at a temperature very close

by[65]. In fact much of the thermodynamic behavior of proteins can be predicted

reasonably well based on the transfer of model hydrocarbons into water[65, 67].

This is the best evidence for a hydrophobic microphase separation model of fold-

ing, and is the basis of the “liquid hydrocarbon” model of the protein interior

(discussed further below and in the final chapter).

Similarly, the stability of proteins does have a maximum at a finite temperature

(generally between 0 and 40◦ C)[2]. Cold denaturation is an observed phenomenon,

5Entropy per mole.
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and this also agrees well with hydrophobic models.

Another important piece of evidence are the cavity studies on T4 Lysozyme[39,

47, 48, 68] and on barnase[69]. A major conclusion from these studies was that

the stability difference, ∆∆G, between wild-type and cavity-containing proteins

included a cavity-volume or area independent term equal to the difference in free

energies of transfer from oil to water of the wild-type and substituted residue.

For instance, in the L99A mutant of lysozyme studied in this thesis, Leucine has

approximately 2 kcal/mol higher a free energy of transfer from hydrophobic solvents

to water than Alanine[47]. Thus the L99A mutant is 2 kcal/mol less stable than

the wild type lysozyme, even before we consider the direct effects of the cavity.

This effect is conserved over many different hydrophobic substitutions, and is good

evidence that hydrophobic effects play an important role in protein folding.

For all this evidence, and as has been discussed in Chapter 1, the model has

some problems. These will be discussed next.

1.4.4 Unresolved problems

The biggest problem in the hydrophobic picture of proteins is that proteins are

not small solutes, and neither are their amino-acid side chains. In fact, it appears

unclear whether hydrophobic stabilization in proteins is volume dependent or area

dependent[61]. This fact may help explain the experimental ambiguity between

area or volume dependence of the change in protein stability ∆∆G in the cavity

studies[47–49] that led to our present work.

One of the most curious issues, reviewed by Barry Honig[67], is that while many

thermodynamic properties of proteins are well modelled by a liquid hydrocarbon

model, the actual stability of folded proteins is not. The heat capacity change
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on unfolding correlates fairly well with buried hydrophobic surface area, but the

free energy of unfolding does not correllate with heat capacity, and therefore with

hydrophobicity of the core. Since unfolding entropy apparently does correllate

with hydrophobic effects, it must be that the enthalpy of unfolding becomes less

positive as the core becomes more hydrophobic. This issue is difficult, and will be

discussed somewhat in Section 7.1.3.

While that issue is particularly challenging to understand, a number of prob-

lems with the hydrophobic model are amenable to studies with high pressure crys-

tallography.

Pressure unfolding of proteins

From a thermodynamic perspective, one of the biggest problems is the pressure

denaturation of proteins, wholly unaccounted for in a simple hydrophobic model[17,

18] in which the protein pressure unfolds as it would at high temperatures. Mixing

of hydrocarbons and water is associated with a large, negative volume (as much as

-100 mL/mol) at low pressures, but at high pressures this volume becomes small

and positive. Zipp and Kauzmann[17] showed for myoglobin that the contribution

to unfolding volume from hydrophobic effects would have to be large and positive at

low pressures and small and negative at higher pressures6. This is exactly opposite

the behavior of short hydrocarbon chains.

Whatever the pressure unfolded state may be, it is not the same as the thermally

or chemically unfolded state. This can be demonstrated by, among other things,

careful measurement of the radius of gyration of the various unfolded states[30,

6Notably the hydrophobic contribution to the unfolding volume is a derived
and somewhat subjective quantity, see Zipp and Kauzmann[17] for details.
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31]. Staphylococcal nuclease (SNase) unfolds from a compact state (radius of

gyration Rg ≈ 18 Å at ambient conditions) to a much larger state (Rg > 45 Å)

when thermally unfolded. In contrast, the pressure unfolded state has a radius of

gyration closer to 35 Å[30]. The pressure unfolded state also retains a great deal

of its secondary structure[2, 31]. If nothing else, the pressure dependence of ∆V

indicates that there is a change in the character of the unfolded state.

Better knowledge of the pressure-unfolded state is needed if we are to fit it

into our picture of protein stability. Given that folded proteins have near optimal

packing densities[70], we must wonder how it is possible to reduce their size by

unfolding the protein. Intuitively, this should produce the opposite result.

Molecular simulation provided the first suggestion that under pressure water

molecules penetrate into the “hydrophobic core” of the protein. Hummer and

colleagues[56, 59] began by examining the thermodynamically averaged attractions

between two methane molecules in water, using their information theory model

discussed above. As mentioned before, it turns out that this system has two

stable states, one where the two methane molecules are in contact, and a solvent-

separated state. As pressure is increased the equilibrium shifts from the contact

state to the solvent separated minimum. The kinetic barrier between the two

states also changes. Based on their simulation, the authors hypothesized that the

pressure unfolded state included a solvated protein interior and a partial loss of

native structure.

More recent simulation work has again implicated internal hydration in pres-

sure unfolding. In their study of pressure and temperature denaturation of a small

protein fragment, Paschek and Garcia[71] showed similar behavior for a β-hairpin

fragment of protein G. Vaitheeswaran et al.[72, 73] have continued by exploring
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the energetics of water molecules in non-polar cavities formed from random carbon

spheres, fullerenes or nanotubes. They have shown that for sufficiently large cav-

ities, where multiple water molecules can share some hydrogen bonds, the cavity

will be filled.

Connecting these results to experiment is difficult: the latest simulation results

for cavities are for cavities which are closed[72], so that no water can actually enter

or exit. Instead, unphysical trial moves allowed in Monte Carlo simulations are

used to determine the relative thermodynamic energies of the states in question.

We could not construct such a situation in a physical experiment. Moreover, the

simultations found that for water-filling of fullerenes to be favorable, the cavity

inside the fullerene needed to be larger than any single cavity regularly found in a

real protein[72].

Paliwal et al.[31] have observed the radius of gyration of Staphylococcal nucle-

ase (SNase) by small angle neutron scattering (SANS) as a function of pressure,

and also made molecular dynamics (MD) computer simulations of the protein. The

simulations were able to reproduce the SANS data quite well, though at a higher

pressure scale. The MD simulations suggest that penetration of water into the core

of the protein is significant, and that much of the secondary structure is retained

on unfolding. This work made an important step forward, but direct observation

of internal hydration of the protein remained out of reach.

Kinetic pressure unfolding experiments, particularly those of Cathy Royer and

Roland Winter over many years, have shown a variety of interesting behaviors[2,

20, 30, 74–77]. Their measurements indicate a range of transition state volumes

and behaviors, some of which suggest that the key step in the pressure unfolding

process is hydration of the protein core[20]. What connection this has to folding in
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general remains to be seen, but a connection might be made if Hummer’s hypothesis

can be verified. In that case, we might generally expect a kinetic barrier between

a state with many buried water molecules and the dehydrated, folded state.

All of this highlights a critical physical issue in protein folding: just how does

the hydrophobic effect work in proteins? While a great deal of evidence suggests

that the hydrophobic effect is dominant in folding, very little effort has been made

to include the effect explicitly in protein structure prediction. One may look to the

pioneering work of Harold Scheraga or Peter Wolynes for evidence that, in fact,

water has been treated until recently as a nuisance to be avoided. This approach

is understandable given the complexity of hydrophobic effects (e. g. [60–62]), and

has been somewhat successful. However as research begins on transition states and

intermediates in folding, we must be cautious not to judge the validity of these

intermediates based on the accuracy of the final, folded state. Only recently have

researchers explicitly considered solvent effects in folding[19, 23, 78], with novel

and quite interesting results. In all cases long-ranged interactions electrostatic and

hydrophobic interactions between amino acid side chains were shown to be water

mediated. One of the studies[19] found that water was expelled from the protein

core only after most of the protein had folded. In the other case[23, 78], water

appeared to smooth the inherently rough energy landscape of a protein, making

the folding process less frustrated. Work from David Chandler’s group[60, 61]

has shown that water-mediated hydrophobic interactions can lead to long ranged

attractions between model cylinders with hydrophilic outer faces and micelle for-

mation of surfactants. These theoretical results motivate experiments on the in-

teractions of water and protein.
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Polarity and polarizability of protein interiors

Another prediction of the hydrophobic model is a small polarity and polarizabil-

ity of the protein interior, since the key feature of hydrophobicity is a relative

inability of the solute to interact with water electrostatically. (Hence the frequent

interchange of nonpolar and hydrophobic.) Indeed, if we take the liquid hydrocar-

bon model literally, we would expect an enormous penalty for transferring water

into a hydrocarbon protein interior. For some oils, this can reach 7 kBT [79]! Po-

larizability of the protein interior is not easy to measure. It has been measured

in Staphylococcal nuclease through a clever, but quite indirect, method[80]. A

titratable acidic residue is buried in the hydrophobic core of the protein, and the

pKa of the residue measured. pKa values are sensitively dependent on the dielec-

tric constant of the surrounding medium, since the medium will screen the charge

present upon deprotonation of the residue.

The result is striking: the pKa measurements indicate that the static (zero-

frequency) dielectric constant is quite high[80, 81]. Why this should be has re-

mained somewhat unclear[82, 83], but it has been suggested that water pene-

trates the hydrophobic core of the nuclease and electrically screens the titratable

residue[82].

We might also suspect that the hydrophobic model is at least incomplete be-

cause of the presence of a large number of dipoles inside a protein, namely, the

peptide backbone of the protein. Each peptide group has a dipole moment larger

than that of water, a fact which is crucial to helix formation. As mentioned above

this also leads to a large polarity of helices, which can be exploited to stabilize

proteins in their folded states[46]. The interior of a protein cannot really be like



32

liquid oil.

Cavities and water in proteins

Determining the presence, volume and solvent accessibility of a cavity in a protein

is challenging; it will be left for Section 5.2.3. Here, all we need to know is that

a cavity (or void) exists when a ball of a given radius can be placed inside the

protein, but cannot escape to the outside solvent via any static path.

Virtually all proteins have cavities, usually totalling about 1 per cent of the

total protein volume[52, 84]. The p∆V energy of even a 150 Å cavity is quite small

at 1 atmosphere; thus volume effects on the system are small at this pressure. As

we increase pressure, the protein must find some means to reduce that volume and

pack more densely. We would expect that if the interior is strongly hydrophobic,

water will remain excluded, despite the obvious decrease in volume if the cavity is

filled. Determining the structural relaxations of protein cavities is thus helpful to

understand the hydrophobic effect in proteins.

A few experiments have identified water buried deep in the hydrophobic core

of a protein at ambient pressure, though some have been marred by experimental

ambiguities. X-ray crystallography experiments that followed the polarizability

experiments mentioned above found water buried in the core of a Staphylococcal

nuclease mutated to have a charged residue in the core[81, 82]. This result may

have been an artifact of crystal freezing[83]. NMR experiments can in principle

detect buried water, as in human interleukin-1β[85]. Others[86] have suggested

potential flaws in this observation, though some later crystallographic evidence

may have vindicated the original result[87].

The role of water in cavities (and of cavities in general) is poorly understood.



33

Some see water in cavities as stabilizing[88] based on the argument that any at-

tractive interaction (here, van der Waals forces) is stabilizing. This ignores the free

energy lost when that water molecule is removed from bulk solvent. Buried water

is ubiquitous in proteins[52, 84], but for it to be buried at ambient pressure it was

thought necessary that the water hydrogen bond directly to the protein[52, 89].

This does not preclude the possibility of water residing in non-polar cavities[69, 72],

but Zhang and Hermans[52] suggest that, even in the case of a large cavity with

many water molecules, interactions with the protein are still needed to stabilize

the cavity hydrated state.

This point might seem moot, but water is believed to play functional roles

in a number of proteins, often in non-polar cavities. Bacteriorhodopsin[90, 91],

cytochrome p450[92], and heme-copper oxidases[90] are all examples of proteins

where internal hydration is thought to be crucial to their function, and where the

presence or absence of water in hydrophobic cavities has been somewhat controver-

sial. Water also can catalyze structural change[68]. Moreover, dehydration of core-

forming residues is increasingly thought to be a rate-limiting step in folding[19, 20],

at least for small proteins of 100 residues.

Without some experimental determination of the free energy of transferring

water from solvent to the interior of the protein, it is difficult to make much of a

conclusion about the role of water in protein structure. Indeed it is difficult to say

how “hydrophobic” the interior actually is. No direct measurement has yet been

made of the polarity of the protein interior.
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Mechanical aspects of proteins

Finally we would like to consider the mechanical properties of proteins. In partic-

ular, debate over the fluidity and packing properties of proteins persists[65, 93].

Crystallographic B-factors, which measure the mean-square thermal displacements

of atoms, are almost universally lower for main chain atoms than side chains. Cav-

ity mutations generally support this conclusion[48, 94]. Recent NMR data[95]

appears to indicate that the creation of a cavity within a protein (by mutations

which remove part or all of one or more amino acid side chains) does increase the

fluctuations of nearby side-chains but that these fluctuations are collective rather

than independent. The cavity of L99A T4 lysozyme is known to be transiently

accessible to solvent without large backbone fluctuations[35, 50]. Indeed the pres-

ence of large cavities in proteins argues that the main chain must be quite rigid.

It is thus interesting to note that cavity-lining side-chain B-factors in L99A T4

Lysozyme (see below and Chapter 5) are smaller than for any other side chains in

the molecule.

Pressure is the best thermodynamic tool to test mechanical properties of pro-

teins. It is especially interesting to ask whether or not a cavity which is transiently

accessible at ambient pressure remains accessible or even open at higher pressure.

1.5 Goals and Organization

We have begun with a well characterized protein, which contains a large cavity,

empty at ambient conditions. There are three possibilities when we pressurize

the molecule: there will be no response, the cavity and surrounding protein could

deform, or solvent (water, in our case) could fill the cavity. The outcome of the
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experiment will depend sensitively on the interactions of atoms surrounding the

cavity with each other and with water. We cannot, in one simple experiment,

determine what exactly those interactions are, but we can determine the relative

free energies of the states we observe. Through detailed modelling, we may further

determine the relative importance of various interactions.

Therefore we lay out three goals for this thesis. First we seek to determine

the outcome of a pressure experiment by crystallographic structure determination.

Second, we will model the system and determine which of its features are most

important in determining the outcome of the pressure experiment. Finally we will

attempt to understand how pressure experiments fit in to the broader understand-

ing of protein folding and function.

The remainder of this thesis is organized in essentially chronological order,

moving from the early considerations of how to generate high pressures for a crys-

tallographic experiment, to our final conclusions about protein structure. First I

will discuss the high pressure techniques used in our work. I will not discuss in any

great detail other methods, except to understand why we chose those used here.

In Chapter 3 I will discuss the preparation of protein crystals for diffraction exper-

iments in the cell described in Chapter 2, and consider data collection. Chapter 4

describes the computational tools used to determine protein structures from x-ray

diffraction data, and carefully considers what one can learn from those structures.

While it may seem esoteric, and the mathematical results will not be used in great

detail, this chapter is particularly important to understand how much confidence

we may place in our results, and where to put our emphasis.

Subsequent chapters will consider the slight structural changes observed (Chap-

ter 5) and more importantly the observation of water in the high pressure structure
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of T4 lysozyme mutant L99A (Chapter 6). We will conclude with a discussion of

the implications of these findings for protein structure in Chapter 7.



Chapter 2

High Pressure Equipment

In this chapter I consider the apparatus used in my high-pressure experiments.

High-pressure protein crystallography demands much of our equipment. We must

maintain sufficient pressure to observe some interesting phenomena, while permit-

ting an unobstructed x-ray path over the large angular range needed to collect a

complete diffraction data set.

Most of the high-pressure equipment used for this thesis was inherited from the

earlier work of Paul Urayama and others in our group[9, 96, 97]. Paul’s thesis[9]

provides somewhat more detail, particularly in the choice of materials, than the

reader will find below. Another good text is High Pressure Technology[98]. Rather

than provide a lengthy description of choices that were not mine, I will review the

equipment used and the basic principles of its operation.

I will first present basic methods of generating pressure and sealing high-

pressure systems. Afterwords I will describe the crystallographic cell.

2.1 High-pressure basics

Before anything else, we must establish a reasonable pressure range for our ex-

periments. Everything else–materials, seals, fittings, and even the method of

pressurization–is ultimately designed around this choice.

37
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2.1.1 Pressure range

In our experiment we have an obvious choice of the relevant pressure range, found

by comparing the p∆V energy of the L99A cavity to the stability of the molecule.

Solving the equation ∆G = 0 = ∆H + p∆V using published values of ∆H [48] and

a guess of the unfolding volume ([27] and private communication with the authors)

yields a pressure of roughly 1000 bar at pH 3 and about 3300 bar at pH 5.7, in both

cases at room temperature. Our crystallographic experiments are carried out at

higher pH1, so the unfolding pressure is likely somewhat larger still.

(Solving this equation for the WT* molecule yields a pressure of more than

10,000 bar, highlighting an interesting problem. At such pressures water will freeze

at room temperature, greatly changing the experiment. We are fortunately not

concerned with this effect here.)

We would ideally carry out an experiment over the full pressure range of in-

terest, which would extend up to the unfolding pressure where ∆G = 0. 5000 bar

(500MPa) is thus a reasonable guess of our maximum pressure of interest. We

were limited in our experiment to much lower pressures by the requirements of a

suitable crystallographic cell.

2.1.2 Materials

Stainless steel has been the material of choice for almost all equipment used in the

experiments described here. It combines good chemical resistance and more than

adequate strength. It is not easily machineable, but high-pressure parts are com-

1The solid state physicist may find this statement odd; I remind the reader that
protein crystals contain a large fraction of liquid water, so that hydrogen ions may
diffuse in and out of the crystal proper, and pH in the crystal is then defined by
equilibrium with a solution which surrounds the crystal.
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mercially available (ours are purchased from High Pressure Equipment Company,

Erie, PA). Flexible stainless steel syringe tubing is needed for connections to the

crystallographic cell, but is also commercially available (Small Parts Incorporated,

Miami Lakes, FL).

The pressurization medium should be as chemically inert and as incompressible

as possible. Water is not a good choice as it becomes extremely corrosive at high

pressure. We have chosen Fluorinert FC-77, a fully fluorinated hydrocarbon (3M

Company, www.3m.com), originally designed for use in the electronics industry.

Most seals I used were cone seals, which require no further materials. We do

not use traditional o-ring seals, but we do use a variant of a Bridgman seal (see

below) which does use an o-ring. O-rings can be made of soft metal such as copper;

we use Viton rubber.

2.1.3 High pressure seals

Cone seals

A cone seal is the most common seal in our apparatus. It consists of a female

inner cone whose cone angle is slightly larger than the cone angle of the male outer

cone piece (Figure 2.1). When the two pieces are compressed together a line seal

forms. A collar on the male piece allows a threaded nut to compress it into the

female cone. While cone seals are durable, they rely on the deformation of the steel

cones in order to seal. Care must be taken not to deform the cones permanently

by over-tightening the nut. Torque-limiting wrenches should be used. 1/4 inch

nominal outer diameter seals should be tightened to 25 foot-pounds; 1/8 inch seals

should be tightened to 75 inch-pounds. Periodic maintenance of the seals, including



40

refacing the cones with a machine lathe, is necessary. Cone seals are useful to

approximately 7 kbar.

Bridgman seals

The Bridgman seal is somewhat more clever, and very useful when it works. The

seal is formed by creating a pressure differential across a plug which compresses

a seal (the two can be one and the same.) A classic Bridgman seal is shown in

Figure 2.2. Since the seal area supporting the plug is smaller than the plug area

facing the pressurized medium, it follows that in equilibrium the pressure in the

seal is higher than in the medium. Therefore the medium cannot push through the

seal. It is not actually necessary to have the plug piece shown; it is only necessary

for there to be a differential pressure across the seal. Because the seal is generated

by the applied pressure, it is extremely robust and can withstand pressures up to

50 kbar[9].

Paul Urayama has made a variation on this seal which we use in our Beryllium

crystallographic high pressure cell[9]. It will be described in Section 2.2.

2.1.4 Pressure generation and measurement

In our work, we have only used liquid pressurization methods. Gas pressurization

can be used, but has several distinct disadvantages for what we do. Chief among

these disadvantages are the greatly increased danger of working with pressurized

gas, and decreased control over the pressure we achieve. Here we discuss the

considerations and methods of pressurization.
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Figure 2.1: Cone seals. Solid arrows indicate applied force onto an adjustable

collar. Dashed arrows indicate a proper line seal. (Top) A properly fitted cone

seal. The adjustable collar (dark grey), threaded onto the end of the tubing, sits

just against the face of the female cone piece, allowing the male cone to deform

enough to seal, but preventing great deformation. (Bottom) If the collar is not in

the correct position, the male cone will be damaged, or (not shown) the male cone

will not contact the female cone and no seal is made. Adapted from [98].
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Plug
Seal

D

d

Pressure

Figure 2.2: A schematic Bridgman seal. A plug compresses some sealing material.

Since the area supporting the seal ∝ D2 − d2 is less than the area facing the

pressurized medium ∝ D2, it follows that the pressure in the seal is higher than

that of the medium, and the medium is unable to force itself out. Adapted from

[98].
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Gas versus liquid pressurization

A gas high pressure pump is generally motor driven and built to achieve some

ultimate pressure. Additional pressure regulators are necessary to control the

pressure on a fine scale. More concerning is the energy stored in the gas while it

is compressed. Remembering our familiar p∆V , we know that the work stored in

compressing a material will be larger the more it compresses. While liquids are

relatively incompressible, gases reduce their volumes by roughly p/patm, potentially

several thousand times. Were the pressure containment system to fail, it would

fail explosively. A beryllium high pressure cell pressurized with gas to 2 kbar must

be considered to be a loaded gun.

On the other hand liquid pressurization stores very little energy in the material,

and can be safely and easily controlled manually. Since most liquids are relatively

incompressible, failure of the system would at worst result in a small drop of the

fluid leaking out. Equipment for liquid pressurization is much more portable. Only

a small hand crank press, a few fittings and some tubing are needed.

Particular to this experiment is the concern that we might force gas into the

L99A cavity. It is experimentally known that nobel gases do bind to the cavity, so

gas pressure was avoided because of the possible artifacts it may induce.

Pressure generation

The pressure generation system is shown in Figure 2.3, up to the crystallographic

cell. A press is connected to two valves. One valve opens to a reservoir of pressur-

ization medium, while the other opens to the crystallographic cell.

The press we use (Hi-P Model 50-6-15) is a metal cylinder with an approxi-

mately 1 cm bore down its axis, through which a piston is forced to compress the
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Reservoir

Hand cranked press

Figure 2.3: Schematic drawing of the pressure apparatus. A fluid reservoir is con-

nected through an inlet valve to the press. The press is also connected to an outlet

valve which is connected by stainless steel capillary tubing to the crystallographic

cell.

pressurization medium. The piston is held in place by external threads, and hand

cranked to compress the medium. The press itself is operable to 2.07 kbar. (This

choice of equipment provides us with some measure of safety: the press will fail

before the Be cell yields.) Periodic maintenance on the piston seal is necessary to

prevent leaks from developing.

Valves rated to ∼ 4 kbar are used to permit easy filling and operation of the

system. Tubing was generally 1/4 or 1/8 inch outer diameter. Small inner diameter

stainless steel tubing is used for flexible connections. It is hard soldered into a
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commercial 1/8 inch tube so that it can be easily connected via cone seals to other

components. This tubing can be quite small and can fail much more easily than

other components. Great care should be used with any flexible tubing in high-

pressure experiments. The valves and connections are cone-sealed to each other.

To fill the pump, one must first drive the piston fully inward. Then one opens

the inlet valve (to the pressurization medium reservoir) and closes the outlet valve.

Reversing the piston fills the piston chamber. It is often helpful at this point to

close all valves, drive the piston in to achieve a small pressure (10 bar) and quickly

open the inlet valve. This helps to purge gas from the system. To apply pressure

to the sample, one closes the inlet valve, opens the outlet valve, and turns the

piston inward.

Pressure measurement

A Sensotec (Columbus, OH) Model UHP transducer measured pressure using a

strain-dependent resistor. It is specified to have 0.5% accuracy and to operate up

to 100 kpsi, well beyond the range of our experiment. Transducers are read out

with a Sensotec SC2000 signal conditioner. The transducer readout slowly relaxes2

over 5-10 minutes even in a system with no leaks. The pressure readout stabilizes

after this time; if it does not the system has a leak. In all of my experiments,

the sample was left to equilibrate much longer than this relaxation time, and the

pressure was recorded after the readout had stabilized.

2It is not entirely clear why this is, but it appears to be due to heating of the
sensor element: more rapid pressurization leads to a greater “overshoot” in the
initial pressure reading.
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2.2 Crystallographic Cell

Our crystallographic cell is based upon the cell originally used by Kundrot and

Richards[11] in their high pressure experiments on hen egg-white lysozyme. Several

improvements were later made by Paul Urayama. The most important of these

changes was a new sealing design which was suitable to at least 2 kbar. Kundrot

and Richards’ design leaked near 1 kbar[11].

The cell is machined from a beryllium-beryllium oxide alloy, Brush-Wellman

grade I-250. Beryllium in general has relatively high strength, but the addition of

some BeO provides additional strength. This alloy is 97.0% beryllium minimum,

with the remainder BeO. The yield strength is 4480 bar. Due to its low atomic

number (Z=4) it has low x-ray absorption. I-250 beryllium has an absorption path

length (for which the transmission is 1/e) of roughly 1.5 cm for 1 Å x-rays. Paul

Urayama’s thesis[9] describes other grades of beryllium and describes the reasons

for the particular choice used here. I-250 showed the best blend of absorption and

strength.

Beryllium metal is relatively safe, but its compounds, particularly the oxide,

can be hazardous. Contact between beryllium and water should thus be avoided

to avoid oxide formation. Inhalation is the primary danger, and the oxides easily

form powders. Inhaled dust or particulate beryllium oxides can, over time, lead

to a condition called chronic berylliosis, an eventually fatal condition. Large doses

at one time can lead to acute berylliosis, a form of anaphylaxis. Beryllium is also

considered to be a carcinogen. To minimize these risks any beryllium should be

stored dessicated in an air and water tight container, and should be cleaned and

dried after use. Protective equipment such as gloves, goggles, and a particulate
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respirator should be worn.

Beryllium metal is brittle and difficult to machine. Along with the concerns of

toxicity, this limits the number of facilities that are properly equipped to machine

the metal. Our original cells were machined by Alfa Machine Company, of Mon-

mouth Junction, NJ. More recently we have had cells machined by Brush-Wellman,

who specialize in beryllium products for a wide range of applications from nuclear

energy to aviation.

The cell and its accessories are shown in Figure 2.4 on the following page.

The cell itself is a simple cylinder, one inch (25.4mm) long, one quarter inch

(6.35mm) in diameter. A 0.75 inch (19mm) dead end bore will contain the crystal

for diffraction measurements. 1/4-28 threads on the open end provide for connec-

tion to the high pressure system. Because the beryllium threads are brittle, we

use an adapter to limit the frequency of threading the cell itself. The adapter has

a receptacle for the cell, and its other end is identical to the open end of the cell

itself. The adapter threads into a base-piece which is hard soldered to a flexible

stainless steel tube. The base piece has a small post so that it is easily mounted

to a standard crystallographic goniometer.

The seal between the adapter and cell is a modified Bridgman seal. The adapter

has an internal cone, and the open end of the cell is chamfered. A Viton o-ring is

placed in the adapter cone and the chamfer compresses the o-ring when the cell is

threaded into the adapter. Because the high pressure side of the o-ring has greater

surface area than the metal-o-ring contact, the pressure in the seal is higher than

in the pressurization fluid. The seal is easily made with only finger-tightening of

the cell.

For a cylinder having ratio of outer to inner radii ω, the maximum pressure
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Figure 2.4: The crystallographic cell. A base piece with capillary stainless steel

tubing connects to the optional adapter, and to the Beryllium cell itself. Adapted

from [9].
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which can be applied before deformation is[98]

Pyield =
Y√
3

ω2 − 1

ω2
(2.1)

where Y is the isotropic yield strength of the material. In our design, with ω = 6.35,

Pyield = 0.56Y , which for Beryllium I-250 is 2500 bar.

2.3 Other cells and methods

Other methods have been used to determine crystallographic structures under

pressure. Paul Urayama[9, 14], along with Rafael Kapfer and Chae Un Kim[24],

developed a method known as high pressure freezing. A group led by Roger Fourme

at the European Synchrotron Radiation Facility (ESRF) has developed a diamond

anvil cell for protein crystallography, and demonstrated its use on lysozyme[99, 100]

and on cowpea mosaic virus[101].

Paul Urayama’s high pressure freezing method involved pressurizing a protein

crystal in liquid isopentane before freezing it by immersing the crystal’s high pres-

sure container in liquid nitrogen[102]. The crystal had to be carefully removed

from the system and excess solid isopentane removed. Careful study[9] suggests

that the pressure effects are frozen in as long as the crystal is never warmed above

the water glass temperature. Thus all operations after freezing must be performed

under liquid nitrogen or a cold stream.

In a more recent variation, the protein crystal is pressurized in helium gas

before flash freezing in liquid nitrogen. One must first coat the crystal with an

oil to prevent it from dehydrating under pressure; water easily evaporates into

high pressure helium. The crystal is placed in a pressure vessel, supported on a

crystallographic “loop” which itself rides in a brass and iron caddy. The crystal is
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held above the bottom of the vessel with a magnet external to the pressure tubing.

Gas pressure is applied, and the sample allowed to equilibrate. It is then dropped,

by removing the magnet, into the bottom of the pressure vessel which has been

pre-cooled in liquid nitrogen. Here the crystal freezes. The crystal is recovered

and stored in liquid nitrogen, and tranferred to a nitrogen cold stream for data

collection.

In principle this technique could be extended to substantially higher pressures

than the beryllium cell, which could be quite useful as we’ll see in Chapter 6. I was

concerned that helium gas would enter the cavity at relatively low pressures and

prevent either cavity collapse or water filling. As of this writing, this possibility

has not been tested. Because it was clear from the beginning that the beryllium

cell would not have such problems, I chose that cell over high-pressure freezing for

my work.

Diamond anvil cells (DACs) have long been used for high pressure studies on

minerals (e.g. [103]) and liquids (e.g. [104]). They consist of two diamonds pressed

into opposite sides of a metal gasket. The means of compressing the sample volume

varies; the most common is to hold the two diamonds in facing plates and tighten

the plates against each other with common machine screws. Various gasket metals

are used, depending on the experiment. Water becomes extremely corrosive in

the kilobar range, and so Rhenium gaskets or similarly resistant materials must

be used. A DAC is able to achieve high pressures by using modest pressures

on the large outer face of the diamond to push on a much smaller supporting

area. Pressures in excess of 100GPa have been achieved. Pressure-dependent ruby

fluorescence is typically used to calibrate the internal pressure.

While the sample in a DAC is visible when pressurized, the useable diffrac-
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tion cone is limited, necessitating higher x-ray energies to obtain high resolution

data. In most cases multiple protein crystals are required to obtain a complete

dataset. The thick diamonds required make an intense source mandatory. Until

recently, DACs struggled to achieve fine (ca. 100 bar) pressure steps reproducibly.

Mohammed Mezour and colleagues[100] have overcome this problem by using an

inflatable metal membrane pressing against one face of the cell to finely control

the pressure.

Despite its difficulties, a DAC is currently the only demonstrated method of

achieving pressures above 2 kbar in a crystallographic cell. High-pressure freezing

could be easily extended to 4 kbar. Above these pressures the equipment required

becomes substantially more cumbersome, and DACs become the optimal choice.



Chapter 3

Experimental Methods: Crystallographic

Data Collection

In the previous chapter, I outlined equipment for high-pressure protein crystal-

lography. Here I will discuss the crystallographic preparations for high-pressure

protein experiments. First crystals must be grown. They will have to be mounted

specially for high-pressure studies. Finally data is collected on a synchrotron x-

ray beamline. Refinement to an atomic protein structure will be discussed in the

next chapter. At each step but crystal growth, high-pressure experiments require

adaptations from routine protein crystallography. As much as possible, specific

protocols will be discussed, to make this text as useful as possible to the reader.

3.1 Crystal growth

3.1.1 Basic techniques

For all experiments discussed in this work, I have grown crystals by the hanging

drop method[105]. This method is straightforward and relatively easy to reproduce.

The difficulty in protein crystal growth is to quickly achieve crystal nucleation

and simultaneously grow crystals of good quality. The former requires strong

association between protein monomers, the latter a weaker association. Thus the

range of conditions under which suitable crystals will grow is generally narrow,

and sometimes seems nonexistent.

The hanging drop method is sufficiently easy that many experiments can be

52
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set up quickly and a wide range of conditions can be tested. The method works by

slowly evaporating a drop of protein solution so that the protein slowly approaches

its nucleation point. The rate of evaporation is controlled by placing the drop in

vapor contact with a second solution of slightly higher precipitant concentration

(see below) and allowing the drop and second solution to reach equilibrium. The

exact parameters will depend on the protein to be crystallized. Exact methods

also vary according to the whims of the crystallographer. I describe my methods

below.

I begin with a solution of precipitants, usually but not always salts of fairly

high concentration, called a mother liquor. I next prepare the protein solution in

a buffer of well known pH, and often with antioxidants, antibacterial chemicals,

or other stabilizers. The mother liquor should be filtered to remove particulate

matter. Generally the protein cannot be filtered as it will bind onto the filter ma-

terial, resulting in almost total loss of the protein. Instead I centrifuge the protein

solution for 10-15 minutes at 10,000-15,000 rpm in a microcentrifuge, sedimenting

any particulate matter1.

Once the solutions are ready, I prepare a commonly available well plate (e. g.

from Hampton Research, Aliso Viejo, CA, or Nextal Biotechnologies, Montreal,

QC, Canada). I fill each well with roughly 1mL of mother liquor. I next pipette

small drops of the protein and mother liquor solutions onto a thin glass cover slip

and mix them by repeatedly pipetting the mixed drop up and down. Care should

be taken to prevent contamination of the stock protein and mother liquor solutions.

1Here, as elsewhere in crystallography, it can be unclear how much of this is
simple superstition and how much is actually necessary. The reader may assume
that if I have included a step here, it is because it was important in achieving final
results of good quality and reproducibility.
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The final drop size is usually 2-20µL. Silanized glass slides help to prevent protein

crystals from sticking to the slide, facilitating later removal.

A bead of vacuum grease is placed around the rim of the well, so that it may

be sealed. The slide is inverted and the drop suspended above the well solution.

To avoid drying out the well or the drop, we must make sure that the grease seal

is continuous and robust2. I like to run the back end of good tweezers around the

edge of the glass slide to compress the grease seal.

Figure 3.1 shows a finished hanging drop crystallization tray.

A wide variety of parameters can be important to the success of the experiment.

The concentration of solutions is of course critical, but sometimes the volume of the

drop, the temperature of the plate, or vibration (either too much or too little) can

be important. In our case, some tinkering with the original recipe was frequently

necessary to produce good crystals. The exact procedures will be discussed next.

3.1.2 Phage T4 lysozyme

Our protein stock solution was provided by Professor Brian Matthews and Dr.

Michael Quillin of the University of Oregon. Both the mutant L99A and psuedo

wild-type WT* were provided at concentrations of roughly 15mg/mL. WT* has

no engineered cavities and has had all cysteines removed for stability (Cys54→Thr

and Cys97→Ala; the mutant is often called TA* for this reason). L99A is a further

mutant of WT* where Leucine 99 has been replaced by Alanine, producing the

cavity described in Chapter 1. I used solutions as they were for the experiments

descibed in this thesis.

2The Nextal plates use a simpler rubber gasket and threaded cover slide assem-
bly, making this process considerably easier. However, the cost is proportionally
larger.
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Figure 3.1: A finished hanging drop crystallization tray. The drop hangs on a glass

slide above a well filled with a more concentrated precipitant solution. Each plate

has 24 wells, and the plate has a cover to protect the slides. Each plate should be

dated and carefully labelled with its contents.
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Crystals of phage T4 lysozyme are usually grown in a 2.0 to 2.2 molar (M) phos-

phate buffer at pH values between 6.8 and 7.2. I prepared phosphate buffers at a

given pH by mixing 4.0M solutions of dibasic potassium phosphate and monoba-

sic sodium phosphate, followed by dilution to the appropriate concentration. I

measured the concentration of stock solutions using analytic acid titration with a

calibrated pH probe. I also occasionally measured concentrations of the mother

liquor itself. It is necessary to first dilute a small sample (usually 100µL) of the

stock solution as pH probes do not work accurately at very high ionic strengths.

I added β-mercaptoethanol (BME) to a final concentration of 50mM. Before the

WT* mutant was produced, this was used in Matthews’ lab to prevent oxidation of

thiols at residues 54 and 97 in the lysozyme[106]. In our case, these thiols have been

removed to avoid oxidation. I added the BME as it aids particular intermolecular

contacts necessary for crystallization.

Next I prepare the hanging-drop well plate. One milliliter of the mother liquor

is added to each well of the plate. Usually each plate I prepared had wells with one

of three different pH values and one of two buffer concentrations. Alternatively, I

placed stock 4M buffer/precipitant in the wells, and added water to dilute to the

appropriate concentration and volume (1 mL), adding the BME afterwords. In

this case, it is beneficial to mix the solutions well by nutating the plate for at least

30 minutes. If the rim of each well does not already have a grease bead, it should

be added now.

A small (5-10µL) drop of protein solution is placed on a clean, silanized glass

slide. I add an equal volume drop of precipitant solution to the protein solution,

and the drop is mixed by pipetting up and down three to five times. Finally I invert

the slide and seal it above the matching well, either with grease or by threading
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the cap snugly.

The recipe I originally tried called for incubating the crystals at 4◦ C for 3 to 4

weeks. On occassion this worked well, but frequently I found it was necessary to

leave the trays at room temperature for a few days to nucleate crystals. In some

cases, the crystals were put back at 4 ◦C to grow, and in other cases left at room

temperature. Alternatively, I added ∼ 100µL of 4M stock buffer to the wells to

concentrate them and increase the nucleation rate. All three protocols produced

good crystals of 0.5 to 1.0mm size in about one month. It was never clear why it

was necessary to nucleate crystals at room temperature or with higher well solution

concentration, but I have no reason to suspect that the crystals are any different

than those grown purely at cold temperatures.

3.2 Preparing crystals for diffraction experiments

After a crystal is grown, they must be prepared for x-ray diffraction measurements.

A number of general points apply regardless of pressure. High-pressure experiments

in the beryllium cell described in Chapter 2 require special loading of the crystals,

described below.

3.2.1 General considerations

Crystals of protein are different from their inorganic or small molecule cousins in

that they are held together by weak forces. Where smaller molecules and in par-

ticular inorganic crystals often have strong ionic or even covalent bonds, protein

crystals are largely held together through dispersion forces, hydrogen bonds, and

salt bridges. They are easily fractured by overly aggressive handling, rapid temper-
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ature changes, or rapid changes in pH or chemical concentrations. Protein crystals

have an exceptionally high water content, anywhere from 30-80%[9]. As a result,

dehydration can rapidly destroy the crystal. Whenever they might be exposed di-

rectly to air, protein crystals should be kept in a drop of their mother liquor, and

a pipette and mother liquor should be on hand to hydrate them rapidly should the

drop begin to dry out. Changes in pH or buffer concentration may be necessary;

these should be performed by slowly adding the new buffer to the drop. Each type

of crystal is different; some learning curve is unavoidable when attempting such

changes.

Crystals of T4 lysozyme have the additional curious property that they are

less dense than their mother liquor, so that they float. It is tempting to suggest

that this is due to the (empty) cavity volume of the L99A mutant, but both the

WT* and L99A variants float in their mother liquor. In fact the mother liquor

is a more than two molar salt solution, making its density larger than that of

the protein. This property makes the crystals somewhat tedious to handle in the

loading process.

3.2.2 Loading the Beryllium pressure cell

The process of loading the Beryllium pressure cell has improved greatly since its

initial use in our laboratory. I will now describe the modern procedure. Crystals

will be loaded first into a glass x-ray capillary (Charles Supper Company, Natick,

MA) which is then inserted into the Be cell. I first prepare a capillary of approxi-

mately the correct length. One must be sure that the capillary is not so long that

moving a crystal inside will become difficult, and not so short that it will become

unrecoverable in the cell. Also the capillary should be neither so wide that it will
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not fit, nor so narrow that the sample is loose in the cell or excess pressurization

medium (usually of higher x-ray absorption) is present. For a cell inner diameter

1.0mm, I have found that 0.9mm nominal diameter capillaries are best.

In practice, the capillary (Figure 3.2) should be shortened so that it is easy to

reach all interior points with crystal handling tools. A Delrin or similar plastic

block with a through-hole of 1.0mm diameter (the same as the inner dimension

of the cell) is useful here. The block should be roughly 0.5 inches longer than the

depth of the hole in the pressure cell (that is, 0.5 inch+0.75 inch=1.25 inch). I

pass the capillary through the hole until it is stopped by the capillary flare, and

break it cleanly at the opposite end with good tweezers. I next flame seal the

capillary by passing the bottom end through a butane lighter flame (see Figure

3.2) while rolling it between clean, bare fingers. After sealing, I verify that the

capillary will still fit in the cell by placing it in the Delrin block. I verify that the

working length of the capillary (the distance along which it is smaller in diameter

than the inner dimension of the pressure cell) is approximately 0.25 inches longer

than the inner depth of the cell. This will ensure that some part of the capillary

will extend out of the beryllium cell when it is loaded, facilitating sample removal.

The crystal must sit in some immobilizing material but remain bathed in its

mother liquor. Following Paul Urayama, I use Sephadex G-200, a large carbohy-

drate that will take up roughly twenty times its mass in water. This will serve

as a soft, semi-rigid support for the crystal in the cell. Care should be taken

to fully hydrate the Sephadex, as poor hydration will result in an osmotic shock

to the crystal and deterioration on the scale of hours to a day. I use a positive

displacement pipette (Drummond Scientific Company, Broomall, PA) to transfer

the mother-liquor soaked Sephadex into the capillary and then centrifuge it to the
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Figure 3.2: Steps in preparing a capillary for the high pressure cell. (Top) First

the capillary is shortened to make it easier to reach the contents inside, and to

ensure that it will fit in the cell. A jig described in the text is useful; tweezers

are used to break the capillary where it emerges from the jig. (Top center) The

capillary is flame sealed. Butane lighters work well for this purpose. (Center) After

using a centrifuge to deposit the Sephadex-mother liquor mixture at the bottom

of the tube, crystals are most easily transferred using standard crystallographic

loops. (Bottom center) The crystal is gently pushed down the capillary using a

smaller diameter glass capillary or a piece of copper wire. (Bottom) A finished

capillary, showing Sephadex gel holding two crystals, separated by small pieces of

thin copper wire, and sealed using grease.
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bottom. If it does not centrifuge easily (in a benchtop centrifuge at only 1000 rpm

for a few minutes at most) it is probably not sufficiently hydrated.

Harvesting the crystal and moving it into the Sephadex is the most sensitive

step of the loading process. It is not complicated, but takes practice. A pipette

method has been described[9], but I find it much easier3 to use a standard crys-

tallographic “loop” (e.g. those from Hampton Research). The crystal is harvested

normally by scooping the crystal from its drop with the loop, and then it is touched

to the inner wall of the capillary (Figure 3.2), preferably along with some mother

liquor to keep it well hydrated. Once the crystal is inside the capillary, dehydration

becomes less of a concern.

Various methods can be used to move the crystal into the Sephadex material.

For robust crystals which do not float, the crystal can be centrifuged into the

capillary. Phage T4 lysozyme floats in its mother liquor so something else will

have to be done. I have found that the best method is to use a 0.3mm glass x-ray

capillary with a slightly larger glass bead at the end (either it came this way, or

I produced the bead using the same method as to seal an open capillary). An

extremely straight piece of small-diameter copper wire can be used, but in this

case care is needed to avoid breaking the fragile glass capillary. Gentle force is

used to gradually move the crystal down the tube. This takes some practice, but

will produce good results.

To make later location of the crystal in the Beryllium cell more straightforward,

small pieces of thin copper wire can be placed on either side of the crystal. I

have found that it is quite easy to load 2-3 crystals in one capillary, making data

collection at the x-ray beamline much more efficient.

3Kudos to Buz Bartow for this idea.
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The capillary is then sealed using grease4 pre-warmed to body temperature.

The grease is injected into the capillary using a small hypodermic syringe. Care

should be taken to avoid leaving excessive air bubbles in the capillary.

Finally, the capillary flare is broken off with tweezers, sizing the overall length

to be about 0.25 inches longer than the internal length of the beryllium cell.

A loaded capillary is shown at the bottom of Figure 3.2. It is placed into a cell

pre-filled with pressurization medium (see Chapter 2 for details). The cell is then

attached to the high pressure press and pressurized.

3.3 Data collection

All X-ray data collected for use in this thesis were obtained at the F1 station of

the Cornell High Energy Synchrotron Source (CHESS). Particulars of the data

collection are noted below.

3.3.1 F1 station equipment

CHESS F1 station uses radiation from positrons in the Cornell Electron Storage

Ring (CESR) passing through a 24 pole wiggler magnet. The resulting X-rays

are first passed through a vertically focussing high-heat load white-beam mirror,

and then into a horizontally focussing silicon crystal monochromator 20 meters

from the source. The beam next passes through a vertically focussing mirror.

The fully focussed beam has a 1mrad horizontal and 0.4mrad vertical divergence,

and is 0.2mm vertical by 2mm horizontal at the focus. A 100µm collimator just

before the sample sets the beam size and divergence. Current operating parameters

4I use Apezion-N vacuum grease, but it is expensive.
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Figure 3.3: Experimental geometry. Incident X-rays (red) impinge upon the sample

inside the beryllium high pressure cell. X-rays scatter (blue) at various angles and

are detected on a CCD camera (outlined in black at left) to produce an image.

The sample can be moved in the plane perpendicular to the beam to best align

the crystal, and is rotated about the axis of the Be cell during data collection.

can be found at http://www.chess.cornell.edu/aboutus/east/f1.htm on the World

Wide Web.

The sample cell is mounted on an air-bearing rotation stage, fitted with a

standard crystallographic goniometer head, whose axis is perpendicular to the

beam and in the horizontal plane. The rotation stage can be translated in three

dimensions for crystal alignment. All of this equipment sits on a motorized optical

bench. Beam alignment is performed by translating and rotating the bench relative

to the fixed x-ray beam. Figure 3.3 shows the sample geometry on the beamline.
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CHESS staff tune the X-ray energy to 40 eV above the Bromine absorption

edge, 13.514 keV, with a typical flux of 3 × 1011 photons per second through a

300µm diameter collimator.

The F1 station uses a pair of ADSC Quantum 4 CCD-based detectors. I used

only one of these for my experiments, as neither the crystal-limited diffraction

resolution or unit cell size warranted use of both. The detector is set roughly

20 cm from the sample, so that diffraction to ∼ 1.9 Å can be collected.

The CCD was controlled using ADSC’s custom software. The station equip-

ment and point detectors are controlled using a combination of SPEC[107] and

in-house software written by CHESS staff scientists.

3.3.2 Choosing collection parameters

A number of parameters must be set before data collection begins. When the first

test images from a particular crystal are taken, we note the quality of the diffraction

spots. Ideal diffraction spots are small in size, circular in shape, and intense but

do not overload the detector. Low resolution spots are important in refinement, so

these should be given as much care as high resolution spots. Features of reciprocal

space called lunes can be seen if the image is of good quality. The resolution,

limited by thermal motion of atoms as well as the intrinsic mosaicity and disorder

of the crystal, should also be noted. Crystals yielding resolution less than 2.5 Å

were discarded, since I knew in advance that crystals of better quality should be

available.

A crystal of good quality and well centered in an x-ray beam will produce an

image like that in Figure 3.4. We will need to collect a minimum amount of data

to adequately sample reciprocal space for future refinement of the structure. To do
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Figure 3.4: A typical X-ray diffraction image. This is the first in the mt2k8 series

(see text). Be powder diffraction rings (Section 3.3.4) are visible, becoming strong

near 2.0 Å.

this we will collect images over an angle of rotation perpendicular to the the beam

of 360/n degrees, where n is the order of the highest symmetry axis5. Modern

software is capable of determining the orientation matrix of the crystal from a few

images or even just one, especially if the space group is already well known; thus

we need not set the crystal to a known orientation before collecting data.

The exposure time is set to achieve maximum resolution possible for the crystal

without overexposing the stronger low resolution spots or subjecting the crystal

to excessive radiation damage. Radiation damage becomes apparent as the reso-

5In this case the crystals are in space group P3221, so n is 6.
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lution in each image decreases, the individual spots become larger and less clear,

and mosaicity increases. We may take still or oscillation images[105]. Oscillation

images are taken while the crystal rotates smoothly from one angle to another,

usually separated by one to two degrees. The advantage of larger oscillation angles

is that we sample a wider wedge of reciprocal space (Chapter 4). One must be

careful not to sample so wide a wedge that reflections overlap on the detector. The

disadvantage is that each reflection spends less time in a diffraction condition, for

a given length of exposure. In practice, this loss is moot: having fewer images sim-

plifies later merging of the data, and exposure time can be increased if necessary.

It is only a concern for weak reflections, where decreasing the background noise by

taking shorter exposures may help the signal to noise ratio.

3.3.3 Alignment of the crystal in the pressure cell

The Beryllium pressure cell is optically opaque, so we cannot align the crystal in

the x-ray beam using the optical techniques common in protein crystallography.

In past experiments using the Beryllium cell, careful measurement of the crystal

location in the capillary, and the capillary in the cell, was used to find the crystal

once on the crystallographic x-ray beamline. The cell was moved a calculated

distance from its end, and the crystal should be in the beam. When working with

large crystals, this method works reasonably well. With crystals of plate or needle

like habits, or crystals that are smaller than the inner diameter of the capillary,

this method of location is extremely tedious.

Instead I have introduced bits of wire into the cell which absorb X-rays more

strongly than anything else in the cell. The pressure cell is mounted on the beam-

line, and a point detector (usually an ion-chamber) is placed between the crystal-
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lographic x-ray detector and the sample. The Be cell is centered vertically on the

beam, using the point detector and the absorption of the cell itself. The cell is

scanned along its axis to locate the bits of wire (Figure 3.5). Combined with care-

ful measurements as in the past, this is an accurate and quick means of locating

crystals. Some T4 lysozyme crystals are also visible as local absorption minima,

an observation we attribute to the strongly electron dense mother liquor.

Figure 3.5: A capillary loaded with two protein crystals and showing the X-ray

transmission corresponding to each part of the capillary. In our case, where the

mother liquor is unusually electon-dense, the crystals are visible as small peaks in

transmission.

To ensure that the crystal is centered on the crystallographic oscillation axis

(see below), images are collected at 0, 90 and 180 degrees rotation. Course align-

ment is sufficient, and this procedure will also allow quick screening of crystal

quality. Once the crystal is in place, collection of X-ray diffraction data begins.
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3.3.4 Other beryllium cell issues

Despite its low atomic number, some absorption and scattering from the Be cell

is inevitable (Figure 3.4). Diffraction rings from beryllium are visible at roughly

2.4 Å, and are become strong at 2.0 Å. This limits the useful resolution of our

experiments to 2.0 Å.

The Be cell is cylindrical, not spherical, and therefore there is a scattering-

angle dependent absorption correction to be applied to the data (Figure 3.6). We

minimize this correction by rotating the sample about the cell axis and keeping

the cell axis perpendicular to the incident beam. In this geometry the absorption

correction depends only on the angle ζ between the axis of the cell and the scattered

x-ray. At 2.0 Å resolution and beam energy ∼ 13.5 keV, there is at most a 0.32mm

or 12% spread in path length through the Beryllium. At this energy the attenuation

length through pure Beryllium is ∼ 18mm, resulting in a less than 2% spread

in absorption corrections from the unscattered beam to the highest resolution

diffraction spots. The ratio I/σI , diffracted intensity to uncertainty, is ∼ 10 at the

highest resolution in each dataset, so that the uncertainty is much larger than this

absorption correction.

If the crystal is off center there is also a correction due to asymmetry of the

crystal position in the cell. We were able to avoid this situation in all cases.

3.4 Data collected

The data used for this thesis were collected in July and November of 2004. Another

synchrotron experiment was performed prior to the final data collection, during

which I worked out many of the details that would make later experiments suc-
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Figure 3.6: Beryllium cell scattering geometry. Adapted from [9]
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cessful. Much of the procedure described above was developed between that first

experiment and July of 2004.

A total of 10 data sets were refined for the L99A mutant at four different

nominal pressures (0, 1, 1.5 and 2 kbar), and six for the psuedo wild type WT*

molecule (at 0, 1 and 2 kbar). The important data collection and reduction param-

eters specific to each dataset are listed in Table 3.1 on the next page. Refinement

parameters will be discussed in the following chapter.

In general, data were collected over as large a range as the alignment and

quality of the crystal would permit. The crystal was rotated through 2 degrees

during the collection of each image, and through between 60 and 120 degrees during

the collection of a complete dataset. Exposures were between 15 and 20 seconds;

the same exposure time is used for all images in one dataset. Collection was

terminated when radiation damage became apparent through decreased resolution

in successive images. The crystals tend to have a right triangular cylindrical shape,

so that three faces are rectangular and the other two faces are triangular. Crystals

used were all approximately 0.8mm in their largest dimension (the base of the

triangle) and 0.5mm perpendicular to the longest dimension.
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Table 3.1: Crystallographic data collected on phage T4 lysozyme. Pnom, nominal

pressure of each dataset; Pact, measured pressure (uncertainty 0.05 kbar, see Ch.

2). r, resolution in Å. C, percent completeness. m, mosaicity in degrees. Rmerge

(in percent) is a measure of the quality of the dataset (see Chapter 4 for definition.)

wt represents data collected on the WT/TA* psuedo wild-type lysozyme, mt the

L99A mutant. July 2004 data are suffixed with a or b. November 2004 data are

suffixed with numerals which are not necessarily sequential.

Name Pnom (kbar) Pact (kbar) r C m Rmerge

mt0k1 0 0.10 2.4 97.3 0.19 6.6

mt0ka 0 0.00 2.2 90.7 0.10 5.8

mt0kb 0 0.10 2.3 94.8 0.14 7.3

mt1k6 1 1.07 2.1 94.8 0.16 11.0

mt1k7 1 1.03 2.2 94.3 0.18 5.5

mt1k9 1 1.07 2.1 94.6 0.15 5.2

mt1.5k1 1.5 1.46 2.1 96.1 0.25 5.5

mt2k1 2 1.90 2.1 92.9 0.13 3.4

mt2k3 2 1.90 2.2 91.3 0.17 3.9

mt2k8 2 1.95 2.1 94.8 0.16 3.6

wt0ka 0 0.31 2.2 95.3 0.11 5.2

wt1k6 1 1.04 2.1 95.3 0.17 7.0

wt1k7 1 1.04 2.1 96.8 0.21 4.1

wt1ka 1 1.01 2.2 94.6 0.11 5.2

wt2k1 2 1.93 2.0 90.5 0.13 5.5

wt2k2 2 1.93 2.0 90.5 0.15 5.7



Chapter 4

Refinement of Crystallographic X-ray

data

This chapter describes the process of constructing an atomic model of a protein

from raw diffraction images. First we must consider how x-rays are diffracted from

crystalline matter. The data collected must then be reduced to a workable set.

Finally the data will be modelled using standard statistical methods. I will describe

these methods in some detail, as they are fundamental to understanding what

this “refinement” produces. The end of the chapter describes practical aspects of

refinement, such as indicators of progress and accuracy, and specific protocols used

for this work.

4.1 Basic diffraction theory

Before I discuss structural refinement from x-ray diffraction data, I will review the

basic principles of diffraction. Nielsen and Morrow have written a good text for

further study[108].

4.1.1 Quantum mechanical basis

All scattering in principle derives from transitions between quantum mechanical

states. In this section I will derive the the “cross-section” (to be defined later)

for x-rays scattering from matter. I will assume that the reader is familiar with

Dirac notation and second quantization. Nielsen and Morrow[108] cover the topic

reasonably well in an appendix, and any text on advanced Quantum Mechanics

72
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should also cover the subject (Sakurai’s Advanced Quantumm Mechanics[109] is my

favorite). Sturm gave a concise and readable review of various scattering processes

for x-rays and other probes[110].

We begin with the eigenstates |n〉 of a Hamiltonian H0 each having energy En

so that H0 |n〉 = En |n〉. Next imagine that there is a perturbing (or interaction)

Hamiltonian HI of as yet unspecified form; we need only assume for what follows

that to first order HI perturbs only the energies, and not the eigenstates, of the

system. Using a first order approximation in time dependent perturbation theory,

we can derive Fermi’s Golden Rule:

wi→f =
2π

}
|Hif |2δ(Ef −Ei) (4.1)

which describes the transition rate between eigenstates |i〉 and |f〉 of H0 in the

presence of the perturbing Hamiltonian HI . Hif are the matrix elements 〈f |HI |i〉.

The Dirac δ-function ensures energy conservation. It should be taken as implied

that to determine the full scattering rate (or the scattering cross section, which will

be defined properly below), Equation 4.1 is to be integrated over all possible initial

and final states consistent with the experiment of interest. It is not, incidentally,

necessary to restrict ourselves to the first order approximation; for instance, the

second order terms yield the transition rates for so-called resonant diffraction.

Our next step is to describe and evaluate the matrix elements Hif . We will

choose a gauge for the (real) vector potential A such that ∇ · A = 0 and so that

the scalarset potential is zero. (In this case, the operator forms of A and momen-

tum commute, and the fields are transverse). From correspondence to classical

mechanics it can be shown that the appropriate Hamiltonian for a singly charged
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particle interacting with light is

H =
(p − eA)2

2m
+ V + Hrad, (4.2)

where p is the momentum of the particle having charge e and mass m. V is the

potential energy of the system in the absence of the externally applied electromag-

netic field. Hrad is the energy in the radiation field itself.

Dropping the radiation field self-energy, Equation 4.2 can be separated into a

part which describes the system in the absence of the applied electromagnetic field,

and an interaction part HI , given by

HI = − e

m
p · A +

e2

2m
A2. (4.3)

Note that I have now written the momentum and vector potential in a new type-

face as p,A to denote that they are properly thought of as quantum mechanical

operators.

Upon quantizing the electromagnetic radiation field (see Sakurai[109]), the vec-

tor potential is written

A =
∑

p

∑

k

√

}

2ε0V ωk

[

ε
p,ka

p,keik·x + ε
p,ka

†

p,k
e−ik·x

]

(4.4)

where ε
p,k is the polarization vector for polarization state p and wavevector k, V

is the volume of some confining box containing the sample, x is a position in space,

ωk the frequency of radiation (ωk = c|k| where c is the speed of light), and ε0 is

the vacuum dielectric constant. a and its conjugate a† are the annihilation and

creation operators for photons. The normalization is chosen so that the energy

in the radiation field, written in harmonic oscillator form E = }ωa†a + 1/2 for

discrete photons, is consistent with the classical energy of the field. a†a is a

number operator. By this I mean that the electromagnetic field is an eigenfunction
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of the operator a†a with eigenvalues equal to the number of quanta in a given

mode of the field (that is, the number of photons having a particular wavevector

and polarization).

Thus the function of the vector potential operator A is to create and destroy

quanta of the electromagnetic field, which we call photons. Returning to Equation

4.3, we can immediately see that scattering requires both an incident photon to

be destroyed and a scattered photon to be created. The first term, corresponding

to emission and absorption processes, is not of further interest here, so long as our

x-ray beam energy is sufficiently different in energy from any transitions between

electronic states of H0. (This is not always true in protein crystallography, where

for instance the absorption properties of particular atoms can be used to extract

phase information as will be discussed briefly in later sections.) For first order

scattering processes with no atomic absorption or emission (and hence no p · A

term), we may write Equation 4.1 as

wi→f =
2π

}
| 〈f ; kf , εf |

e2

2m
A · A |i; ki, εi〉 |2δ(Ef −Ei + }ωf − }ωi) (4.5)

Note that generally the states |n; k, εp〉 denote the nth electronic state combined

with a photon state. Here, |i〉 and |f〉 denote the initial and final electronic states

of the system, subscript i and f indicate the initial and final wavevectors, frequen-

cies and polarizations of the electromagnetic field, and Ei, Ef are the initial and

final energies of the electronic states. The Dirac δ-function enforces total energy

conservation. Again, to determine the experimentally observed cross section, we

must integrate over all initial and final states consistent with the experiment.

I will next make use of the fact that the photon states |k, εp〉 can be written as

a creation operator acting on the zero-photon state |0〉: |k, εp〉 = a
†

p,k
|0〉. Two of
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the terms resulting from the integral 〈kf , εf |A · A |ki, εi〉 will thus be of the form

〈0|aa†a†a† |0〉. Letting all of the operators act to the right, this is the product

of a zero photon state with a two photon state, which is identically zero. Making

use of the fact that ak and a
†

k
′ commute if k 6= k′, the nonzero terms have the

matrix elements

〈f, 0|a
pf ,kf

(a†

p′,k
′ap,keiq·x + a

†

p,k
a

p′,k
′e−iq·x)a†

pi,ki

|i, 0〉 (4.6)

where I have introduced q = k′ − k. Only in the case that k′ = kf and k = ki

(or vice versa) is the matrix element non-zero. The simple way to see this is to

observe that you can’t destroy a photon that isn’t already there. The net result

is that for all first-order scattering, the matrix elements squared take on the form

| 〈f | e−iq
fi
·x |i〉 |2 where qfi = kf − ki; since the electronic states’ amplitudes

squared are just the charge densities, the relevant scattering matrix elements give

Fourier transforms of some charge density, though what charge density we have

not yet specified.

We now gather all of the important constants out front. The net result is

wi→f =
2π

}
(εf · εi)

2

[

e2}

2mε0V

√

1

ωkf
ωki

]2

| 〈f | e−iq
fi
·x |i〉 |2δ(Ef −Ei + }ω), (4.7)

where ω = ωf − ωi We collect a factor of ro = e2/4πε0mc
2, the classical radius of

the electron, to arrive at

wi→f =
2π

}
(εf · εi)

2r2
0

[

2π}c2

V (ωkf
ωki

)1/2

]2

| 〈f | e−iq
fi
·x |i〉 |2δ(Ef −Ei + }ω). (4.8)

We recognize (εf · εi)
2r2

0 as the Thomson scattering cross section for a single free

electron, exactly as calculated from classical electrodynamics.

We are interested in the scattering cross section, the number of photons scat-

tered from a single particle into a small range in k-space about some final wavevec-

tor kf , divided by the incident flux and the volume in phase space into which we
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scatter. Equation 4.8 describes the scattering rate from a well defined initial state

into a particular final state. We will assume the incident photons all have a pre-

cisely defined wavevector and energy (and for synchrotron radiation, polarization),

but clearly this is not the case for the scattered photons.

We need to consider the volume of phase space into which the photons can

scatter, and the density of states in that volume. The allowed values of k, in a box

of side L, are obtained by enforcing periodic boundary conditions at the sides of

the box. Thus k = (2π/L)(nxx̂+ nyŷ + nz ẑ), where the n are integers and x̂, ŷ, ẑ

are orthogonal real space unit vectors. The number of photons scattered from an

initial state |ki〉 into a small volume k2
fdkfdΩ of k-space is then

Isc = N0

∑

f

wi→f
V

(2π)3
k2

fdkfdΩ (4.9)

where N0 is the number of incident photons, V = L3 and kf is the magnitude of kf .

We are interested in the quantity d2σ/dΩdEf , the fraction of photons scattered into

a certain angular region dΩ and energy region dEf around a particular kf (and

its associated Ef ). The incident photon flux is the number of incident photons

N0, divided by the volume V in which they reside times their velocity c, and the

differential in energy is just dEf = }ckf . With these values, the doubly-differential

scattering cross section is Isc/(N0}c
2dkfdΩ/V ), or

d2σ

dΩdEf
= r2

0(εi · εf)
2kf

ki

∑

f

| 〈f | e−iq
fi
·x |i〉 |2δ(Ef −Ei + }ω). (4.10)

I have implicitly assumed that neither is there absorption in the sample nor

do photons scatter more than once. Both have similar effects, since both limit the

depth into a sample that the incident beam penetrates. (Multiple scattering implies

that the scattered beam is sufficiently strong that the second scattering from this

beam is detectable. This has two effects: the scattered intensity is redistributed
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in the k space, and the incident intensity varies significantly with depth in the

sample–the same net effect as absorbtion.) This assumption has the interesting

consequence that an infinite sample would scatter an infinite number of photons,

so that more photons are scattered than are incident on the sample, which cannot

be true. The proper treatment is discussed by Batterman and Cole[111], but for

protein crystallography Equation 4.10 is an excellent approximation.

I have not yet made any comment about whether the scattering is elastic,

that is, whether |ki| = |kf |. There is no need for this constraint, though it is

frequently arbitrarily and separately enforced in derivations of scattering. Equation

4.10 contains both the Compton and Thomson scattering in one unified form.

Fortunately, unless the initial and final electronic states are the same, the matrix

elements in Equation 4.10 are generally (though not always) small. Thus, unless

the Fourier transform of the ground state electron density is small, elastic scattering

from a sample dominates over all other scattering processes.

This raises another important issue. We do not, in a typical crystallography

experiment, have any energy resolution at all. (It is entirely possible to measure

the scattering cross section as defined in Equation 4.10, as has been done for

water[112] and other materials.) We instead measure the cross section defined in

Equation 4.10 integrated over all possible final photon energies. We use the fact

that
∑

f |n〉 〈n| ≡ 1, and integrate over final energies to find that the measured

scattered intensity is

I(qfi) ∝
dσ

dΩ
∝ 〈i| e−iq

fi
·(x−x′) |i〉 (4.11)

which is the Fourier transform of the density autocorrelation function.

Finally, I have only considered the electronic states of a system. Indeed, all
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charged particles scatter photons, but since the mass of the scattering particle

enters twice in the denominator of Equation 4.10 (there as part of the classical

electron radius), heavier particles like protons scatter much less than lighter par-

ticles like electrons.

4.1.2 Scattering factors

Given an electron density ρ(r), the scattering factor is defined as

f(q) =

∫

V

ρ(r)eiq·rd3r, (4.12)

where q = ks−ki is the difference between the scattered and incident wavevectors,

and the integral is over the scattering volume (the intersection of the photon beam

and the sample.) Simply put, the scattered amplitude in q space (or reciprocal

space) is the Fourier transform of the electron density of the specimen.

A crystal is the convolution of some basic repeat unit (often several copies

of one protein in different orientations) with a lattice, defined by lattice vectors

R =
∑

i aiεi, where εi are the real-space basic vectors (i = 1, 2, 3) and ai are

integers. If the scattering factor of the basic repeat unit is F (q), then the scattering

from a crystal will be

Fcryst(q) = F (q)
∑

R

eiq·R. (4.13)

We may consider particular atomic models for the electron density if we wish, but

these can be generated easily from Equation 4.12, by producing a model of each

atom’s individual electron density. These are frequently more easily characterized

by the atomic scattering factors

f(q) = f0(q) + f ′(q) + if ′′(q). (4.14)
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To construct F (q), we simply sum up these contributions analogously to Equation

4.13. The first term f0 is from Equation 4.12, and the second and third terms

account for anomalous scattering. In the derivation of Equation 4.12 it was as-

sumed that all electrons are free, which is not true for core shell electrons in real

atoms. The energy of x-ray photons may also be quite near the quantum mechani-

cal binding energies of these electrons, so that absorption and near-resonance must

be considered. f ′ and f ′′ account for these effects.

Our experiment measures the differential scattering cross section, I(q) (Equa-

tion 4.11), which is proportional to the squared amplitude of the scattering factor

F . This gives rise to the phase problem encountered in inverting diffraction data to

real-space electron density. It will be discussed in more detail later in this chapter.

4.1.3 The reciprocal lattice and symmetry

In Equation 4.13, the sum over all lattice vectors in a perfect crystal having N

cells is, assuming N to be very large:

∑

R

eiq·R = N ⇐⇒ q · R = 2πn, (4.15)

where n is an integer, otherwise the sum is essentially equal to zero1. Defining the

reciprocal lattice basic vectors

ε∗i = 2π
εj × εk

εi · (εj × εk)
, (4.16)

1For a finite crystal, the modulus of the sum is actually sin(Nπξ)/ sin(πξ) where
ξ measures the distance in reciprocal space from a particular Bragg reflection h,
so that q · R = 2π(n + ξ). The sum goes to N as q · R → 2πn. This is a
straightforward application of geometric sums; see Nielsen and McMorrow[108] for
further discussion.
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such that εi · ε∗j = δij , we find solutions to equation 4.15

G =
∑

Giε
∗
i = hε∗1 + kε∗2 + lε∗3. (4.17)

The integers h, k, l are the Miller indices of the reciprocal lattice point. Equation

4.15 is satisfied if q = G.

The Laue condition Equation 4.15 is not particularly easy to visualize on its

own. Instead, consider a sphere of radius |ki| = |ks| = 2π/λ tangent to the

origin of reciprocal space q = 0. (See Figure 4.1.) Here λ is the wavelength of

x-rays, which defines the magnitude of the incident and scattered wavevectors.

The incident wavevector ends at the origin, and its beginning defines the center of

the sphere. The scattered wavevector ks begins at the center, and its end traces

out the sphere. Any point G of the reciprocal lattice which lies on the sphere is

a solution to Equation 4.15. For convenience the angle between the incident and

scattered wavevectors is 2θs. This Ewald construction leads to a form of the more

familiar Bragg condition for diffraction:

G =
2π

d
=

4π

λ
sin θs. (4.18)

The spacing d between Bragg reflection planes is defined by the Laue condition.

Some symmetry properties of diffraction are important in checking the quality

of experimental data. From Equation 4.12, we can see that F (G) is the complex

conjugate of F (−G). Thus the amplitudes and intensities of these two diffracted

beams are identical. Such related reflections are referred to as Friedel or sometimes

Bijvoet pairs. Checking that their intensities match is a useful check of the unit-cell

indexing and data merging steps described later on.

Additionally, any symmetry of the lattice or of the unit cell will introduce

symmetries into the diffraction. T4 lysozyme crystallizes in spacegroup P3221,
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Figure 4.1: The Ewald Sphere. The Laue condition is satisfied when the origin and

another point on the reciprocal lattice (grey circles) fall on the sphere of radius

|kinc| = |kinc| = 2π/λ.
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whose symmetry operations are listed in Table 4.1. Each operation effectively

divides the unit cell into asymmetric units; P3221 has six asymmetric units.

The easiest way to determine the symmetry in the diffraction pattern due to

a symmetry in the electron density is to observe that for a coordinate transfor-

mation r → Rr + t which preserves the electron density ρ(r) = ρ(Rr + t), the

corresponding structure factors are

F (q) =

∫

ρ(r)eiq·rd3r

=

∫

ρ(Rr + t)eiq·(Rr+t)d3r

= F (RTq)eiq·t. (4.19)

In this transform, R is a rotation matrix and t a translation. Since the translation

adds only a phase, it will not affect the symmetry of the diffraction pattern. It

can however lead to extinction for reflections along the translation axis[113].

Table 4.1: Symmetry operations of space group P3221. Real-space coordinates

x, y, z are expressed as fractions of the basis vector lengths. i = −h− k. From the

International Tables for Crystallography, volumes A and B.

Real-space Reciprocal-space

symmetry symmetry

x, y, z → x, y, z h, k, l → h, k, l

x, y, z → −y, x− y, z + 2/3 h, k, l → k, i, l

x, y, z → y − x,−x, z + 1/3 h, k, l → i, h, l

x, y, z → y, x,−z h, k, l → k, h,−l

x, y, z → x− y,−y, 1/3− z h, k, l → h, i,−l

x, y, z → −x, y − x, 2/3 − z h, k, l → i, k,−l
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4.1.4 Temperature factors

Thermal disorder in the crystal results in an overall reduction of the diffracted

intensity[105, 108] by the factor exp(−2B sin2 θs/λ
2). The temperature factor B =

8π2 < ∆r2 >, where < ∆r2 > is the mean squared displacement of atoms in the

protein crystal. The overall correction is often referred to as the Debye-Waller

factor.

In practice, many kinds of disorder contribute to a reduction in diffracted in-

tensity indistinguishable from the Debye-Waller factor. The intensity I(G) is the

product of F (G) and its complex conjugate F ∗(G), and can be written in terms

of the temperature-adjusted individual atomic scattering factors fDW,i(G) and po-

sitions ri as

I(G) = F (G)F ∗(G) =
∑

i,j

fDW,i(G)f ∗
DW,j(G)eiG·(ri−rj). (4.20)

If the sum is over all atoms in a large crystal (in the same sense as in Equation

4.15), then we can approximate that the average intensity is

< I(G) >=
∑

i,j

fDW,i(G)f ∗
DW,j(G) < eiG·(ri−rj) >=

∑

i

f 2
DW,i. (4.21)

The averages (denoted by brackets <>) are generally taken over shells of G having

magnitude between G and G + δG. Usually twenty or so such shells are used to

cover the entire dataset. Even in this case, the phase angles vary enough so as

to be distributed randomly so that the approximation in Equation 4.21 is valid.

The factors fDW,i(G) are generally assumed to be isotropic and so are essentially

constant within each shell. This can then be used to scale measured intensities,

by a constant C, to absolute values appropriate for inverting Equation 4.12:

< I(G) >meas= C < I(G) >abs= Ce−2Bave sin2 θs/λ2
∑

i

f 2
i (G). (4.22)
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A Wilson plot plots ln(< I > /
∑

f 2
i ) versus sin2 θs/λ

2 to determine this scaling.

Both the overall temperature factor Bave and the scaling constant C are used to

put the data on an absolute scale for later refinement. In practice, Wilson plots

should be linear over a broad range of data, as in Figure 4.2. If they are not, the

data should be examined more closely for indexing or integration errors.

I have not derived the form of the Debye-Waller factor, but were I to do that,

we would find a second important term, involving the correlation between atomic

displacements[108]. This term gives rise to thermal diffuse scattering or TDS for

short. It contains information about low-energy elastic modes and also static

defects in the lattice[108]. We will not consider it further here, as the TDS is

generally weak in protein crystals.

4.2 Data reduction, refinement, and error

4.2.1 Reduction and observational uncertainties

We do not know the intensity of the incident x-ray beam or the absorption of the

crystal, which may vary from image to image for a variety of reasons, including

changing path length of x-rays through the crystal as it rotates or the decay of the

synchrotron electron or positron fill. Thus the images need to be scaled together

via some scale factor Kl where l is a layer, usually a single diffraction image.

We measure structure factor amplitudes Fhl, where h stands for a particular

x-ray reflection and the measurement is in layer l. (Note that in this section, l

does not stand for a Miller index.) These are generally corrected for polarization

and geometry dependent factors[108] before the process of scaling begins. In most

cases, there will be multiple measurements of each reflection. Associated with



86

each amplitude is a standard uncertainty σhl, derived from Poisson statistics as the

square-root of the intensity of the reflection.

Various schemes for image scaling exist, but I will only comment on that used

by the program Scalepack[114, 115]. It uses a non-linear least squares method to

minimize the function

Ψ =
∑

h

∑

l

1

σ2
hl

(F 2
hl
−KlF

2
h
)2, (4.23)

where Fh is a weighted average of the Fhl[115]:

F 2
h

=

∑

l

1
σ2

hl

KlF
2
hl

∑

l
K2

l
/σ2

hl

. (4.24)

Errors are estimated from the covariance matrix of this minimization (see discus-

sion of error in maximum likelihood methods below). These should in principle be

much smaller than the Poisson uncertainties of the individual reflections.

The statistic Rmerge =
∑

h

∑N
l=1 |Fh−Fhl|/

∑

h
NFh, whereN is here the number

of images, is a typical indicator of integration and scaling quality[105, 114]. For

completeness, Rmerge is listed for each dataset in Table 3.1. However, note that

Rmerge is an unweighted sum, which takes into account neither the layer weights

Kl nor any error in measurement. It is traditionally used to assess the quality

of merging data from separate crystals, and is thus not ideal in measuring the

quality of diffraction. Better choices to assess data quality and resolution are the

resolution shell averaged values of I/σI or F/σF . These are plotted in Figure 4.3

for a typical dataset. It is crucial that one indicate the scaling algorithm used in

calculating these parameters, because their values can depend significantly on the

reduction procedure[114, 115].

At the end of the scaling step, one should examine at least the Wilson plots

for the data. One such plot is shown in Figure 4.2 for the mt2k1 dataset. Wilson
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Figure 4.2: A Wilson plot for the mt2k1 dataset.

plots are never perfectly linear, and at low resolution (left side of the figure), the

assumptions made for the plot fail. This plot is typical of the data described in

this thesis, and indicates adequate data for further refinement.

4.2.2 The phase problem

As noted above, we collect diffraction intensities as data, and wish to invert them

to obtain an electron density. The inverse Fourier transform of Equation 4.12

requires the phases of the complex structure factors, which (at present) we cannot

measure in normal crystallography experiments. A number of techniques known as

direct methods use theoretical means to obtain these phases, but the vast majority

of crystallogaphy attempts to solve structures without these methods.

More frequently, a small set of phases is obtained by using anomalous diffraction

techniques, such as multiple anomalous diffraction (MAD), which uses the wave-

length dependence of atomic scattering factors in absorbing atoms to construct
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Figure 4.3: Structure factor amplitudes divided by standard uncertainties, versus

resolution.

a Patterson map[105] of a small subset of atoms in the molecule. This provides

a starting guess at the phases which can be used to bootstrap refinement. It is

nonetheless necessary to go through an often laborious process of model building

in which the molecule is threaded through a probably disconnected and noisy elec-

tron density map generated by the Fourier transform of observed structure factor

amplitudes convolved with rough guesses at phases. Usually manual intervention

is needed. As this technique is not used for our work, we will not consider it further

here.

Here we work with proteins of well known structure at ambient pressures. This

allows us an in principle easy solution to the phase problem2: we calculate them

using Equation 4.12 from the electron density of the known structure. We bypass

2It is interesting to note that errors in the phases themselves are believed to
be quite large[116]. That this does not severely hinder refinement speaks to the
robustness of the methods.
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model building and proceed directly to refinement. One may question the validity

of this approach. We are assuming that the pressure-induced changes in the struc-

ture will be sufficiently small so as to not drastically change the structure factor

phases and make refinement from the ambient pressure structure to the high pres-

sure structure difficult or impossible. As previously discussed, and documented

in the literature[12, 14], pressure-induced changes are on the order of tenths of

angstroms. Ultimately, the validity of this assumption will be tested by whether

or not we can refine the data to a reasonable structure. As we will see later in this

chapter, that is indeed posssible.

For the mt2k1 dataset, the phases change fairly uniformly as refinement pro-

ceeds, and mostly independent of resolution s = 2 sin θs/λ, by 25-30 degrees. Phase

errors in well refined structures can be easily this large[116], even if the structure

is quite accurate.

4.2.3 Maximum likelihood and error formalism

The statistical method which we use to determine a protein structure from x-

ray diffraction data is known as maximum likelihood. When we determine the

structure of a macromolecule from a set of data, we are really asking which, out of

the ensemble of all possible structures, is the structure most probably represented

by the data? Formally, we maximize the conditional joint probability of a vector

of parameters x given a vector of amplitude observations F o, P (x; F o) (It is not

necessary to choose only one such structure; using Monte Carlo methods, or other

techniques, it can be possible to determine a meaningful ensemble of structures

which are consistent with the data, e. g. [117].) By Bayes’ theorem, this posterior
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probability is[118]

P (x; F o) = p(x)P (F o; x)/P (F o) = p(x)L(x; F o). (4.25)

p(x) is the prior probability distribution of the parameters x, which reflects any

previously known features of the model (see below). L(x; F o) is the likelihood func-

tion, a measure of the probability of observed structure factors given a particular

model.

Generally we use a variant of Equation 4.25 with calculated stucture factors F c

in place of atomic coordinates (model parameters) x, for the simple reason that

it is easier to make the comparison in reciprocal space than in real space. (The

model with which we calculate the F c will be considered later.) One occasionally

will find a reference to “real space residuals” (e. g. [119]) where the experimental

data are inverted to generate an electron density which is then compared with the

model density. I have not used real space residuals in this work, except in the

sense of seeking out places where there may be atoms missing in the model.

The likelihood function L is of chief concern here, and it is here that the

various refinement programs diverge. All model fitting routines, no matter how

simple, or how hidden, implicitly use the concept of maximum likelhihood. Here

we will discuss the likelihood function used in Refmac version 5[118], used for the

refinements in this work.

A good example that will familiarize the reader with the concept underlying

maximum likelihood is the familiar least squares residual. It is the negative log of

the probability function

P (O; x) =
∏

i

exp
(

− (Oi − yi(x1, ..., xn))2) , (4.26)
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which is the joint normal probability that some function yi of model parameters x

yields the observed data O. (Note that the components of the vectors are denoted

as Oi and xi in Equation 4.26.) Here no prior probabilities of parameters or

uncertainties in the measurements are included, which amounts to the assumption

that the uncertainties are all 1, in the units of measurement corresponding to

the observations x. (Thus the exponential factor in Equation 4.26 is assumed

dimensionless) The log-likelihood form (here, the least squares residual
∑

(Oi−yi)
2)

is much more convenient to work with. The refinements described below all use

the log-likelihood form in their actual implementation.

4.2.4 The likelihood function

A number of assumptions must be made to make use of Equation 4.25 in model

refinement. These are not always well justified, and in some cases it has been shown

that refinement under these assumptions leads to underestimated parameter errors,

e.g. [116]. Nonetheless we must make such approximations to move forward.

We first assume that the probability P (Fo,h|;Fc,h) of observing any one observed

amplitude Fo,h, with indices h ≡ h, k, l, given the model-calculated amplitude Fc,h

is independent of all other amplitudes, so that we may write the joint probability

as a product of probabilities for each reflection. This is most likely not the case,

but has proven to be a useful approximation[118].

Second, we assume that errors in atomic coordinates are both independent and

have the same distribution for all atoms. This cannot hold if we apply stereochem-

ical restrains to an atomic model as will be discussed below. All evidence (e. g. ,

[120] or [121]) suggests that this is nonetheless an improvement.

Following Srinivasan and Ramachandran[122], Randy Read[120] and others
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showed that under these assumptions, the probability of observing a reflection

with Miller indices h, k, l to have (complex) structure factor Fp given the model

calculated structure factor Fc in the absence of observational error is:

P (Fp;Fc) =
1

πεΣ(1 −D)
exp−

[ |Fp −DFc|2
εΣ(1 −D)

]

, (4.27)

for acentric reflections [118]. D is a parameter involving the errors in coordinates,

∆x, and temperature factors ∆B, D =< exp[−(∆Bs2/4)] cos 2πs∆x >. The

brackets <> indicate a probability weighted average over the distributions of ∆x

and ∆B. Σ = ΣNatoms

j f 2
j (s), where s = 2 sin θs/λ. ε is the multiplicity of the par-

ticular diffracted reflection. Some modification is necessary for centric reflections

(for which phases are more restricted), but the general form is the same.

This distribution is actually quite easy to derive[120, 122], although at first

glance it seems mysterious. We begin from the probabilities of positions of indi-

vidual atoms, which is the convolution of the positions themselves and some prob-

ability distribution which we take to be the same for all atoms. The probability of

each structure factor is determined from the Fourier transform of the probability

distribution of atomic positions. The centroid of observed structure factors Fo is

then simply some complex multiplier times the corresponding model structure fac-

tors Fc. That complex multiplier is D. Thus Equation 4.27 is simply a Gaussian

distribution of observed structure factors about an appropriate mean value deter-

mined by properly considering how model uncertainties propagate through to the

structure factors.

The effects of observational uncertainties σFo
, estimated in the integration and

scaling step, are added in heuristically by letting εΣ(1 −D) → 2σ2
Fo

+ εΣ(1 −D)

in Equation 4.27. Though it is imcomplete, there is a reasonable foundation for
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this approximation[121]

We now return to Equation 4.25 and consider the probability of a given observed

amplitude. To do so, we integrate over all phase angles with some probability

distribution for phase angles. Assuming all phases are equally likely, we obtain[118,

122]

P (|Fo|; |Fc|) =
2|Fo|

2σ2
Fo

+ εΣ(1 −D)
exp

(

− |Fo|2 + |DFc|2
2σ2

Fo
+ εΣ(1 −D)

)

×

I0

(

2|Fo||DFc|
2σ2

Fo
+ εΣ(1 −D)

)

(4.28)

for acentric reflections, where I0 is one of the hyperbolic Bessel functions. Again,

the differences for centric reflections are minimal, and reflect the fact that the

distribution for centric structure factors is one dimensional, not two dimensional.

A number of extensions can be made to consider special cases, for instance

where phases are better known or where parts of the model are disordered or

missing entirely. These are treated in the references[118, 120–123].

It is also the case that before 1997 or so, refinement was based upon simple

least squares residuals using either intensities or amplitudes of reflections. This

assumes, among other things, that the errors in measurement are the same for all

h, k, l and that there are no phase errors. On the other hand, it avoids potentially

difficult covariances in fitting, as we have now added in many parameters with

similar effects on the model (the D, or their cousins σA[123]).

4.2.5 Error formalism

We would like an estimate of the uncertainty in our final, refined model. For

simplicity we will ignore the effects of restraints3, and also assume a least squares

3Formally, they enter into the residual just as observations do[124].
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residual, something of the form[124, 125]

χ2(x) =
∑

h

wh

(

Fo,h − Fc,h(x)
)2
, (4.29)

where each reflection h ≡ h, k, l is weighted by the model-independent wh (often

involving estimated observational uncertainties), and x represents the model pa-

rameters. Our goal is to minimize this residual, using non-linear least squares

tactics. The minimization condition is

∂χ2

∂xi
= −2

∑

h

wh(|Fo,h| − |Fc,h({xi}|)
∂Fc,h

∂xi
= 0, (4.30)

for all model parameters xi. Given a starting set of model parameters, how do

we arrive at the parameters that minimize the residual 4.29? Sufficiently near

the solution, the problem is essentially quadratic and described by a Hessian or

curvature matrix. More generally, the problem must be solved iteratively. In either

case, we want to find the jump δxi which reduces error in the model. There are

number of possible methods. One is the linear guess[126],

δξh =
∑

i

∂Fc,h

∂xi
δxi, (4.31)

where i is a model parameter index, c refers to calculated structure factors, and

h ≡ h, k, l stands for the Miller indices of a particular reflection. Writing this in

matrix form we have δξ = Aδx, where Ah,i = ∂Fc,h/∂xi. Now, δξ is the vector

of residuals for each reflection and δx the (guessed) vector of parameter changes

that will minimize χ2. Some matrix rearrangement yields

Nδx = b, (4.32)

where b = Aδξ. N is called the normal matrix, and for our purposes its elements

are approximated by[125]

Nij =
∑

h

wh

∂Fc,h

∂xi

∂Fc,h

∂xj

. (4.33)
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The normal matrix is particularly important because it is the inverse of the

covariance matrix C. Standard uncertainties are obtained from the diagonal ele-

ments of C as σ2(xi) = Cii ≡ (N−1)ii.

The normal matrix can also be derived by expanding the residual as[125]

χ2 = γ − d · x +
1

2
x ·D · x (4.34)

where D is the curvature matrix, d is the gradient of χ2 (which should be zero

at a minimum), and x is again a vector of the model parameters. In this case,

where the curvature matrix can be calculated directly, the best guess of a change

in parameters is δx = D−1 · [−∇iχ
2]. This is identical to Equation 4.32.

Though in principle inversion of the matrix N permits direct estimation of

parameter uncertainty in a model, for a large system this is computationally ex-

tremely difficult. Moreover, there is a tacit assumption in the calculation of this

matrix that the χ2 surface is in fact quadratic to some good approximation. Co-

variance of the model parameters will arise because of our restraints, also skewing

our error estimates.

Perhaps most importantly, we do not use a least-squares residual. The actual

residual is more complicated and does not follow the simple argument above unless

we are in fact very close to the “true” solution of the minimization[118].

Cruickshank[124] discusses these and other difficulties, ultimately coming to

the conclusion that even for data sets and refinement procedures where calculation

of the covariance matrix is possible and stable, it is extremely impractical. Instead

he suggested the diffraction-component precision index, or DPI. He has compared

his DPI to the results of full matrix inversion4 for superb data and well refined

4The process of calculating the covariance matrix.
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models. There was substantial agreement between the two error calculations. For

completeness, we include the Rfree form of his DPI here:

σDPI(r, Bave) = 31/2(Nocc/nobs)
1/3C−1/2rRfree (4.35)

where

• Nocc is the number of fully occupied sites (i. e. atoms in the model),

• nobs the number of observations (reflections),

• C the fractional completeness of the dataset to dmin,

• r the resolution limit of the data, and

• Rfree is a measure of refinment progress defined in section 4.3.2.

This provides some useful guess of the average uncertainty in the model, but

does not address individual atomic position uncertainties. We must use it cau-

tiously, especially in areas of poor constraint or regions which have unusual tem-

perature factors.

The derivation of Equation 4.35 is not at all trivial, and will be left to the

references[124, 127]. Let it suffice to say that the formula is somewhat ad hoc,

but with some grounding in the full matrix inversion method noted above. Due

to this derivation, this formula should be viewed with some caution when using

residuals other than least-squares. Cruickshank has modified his original formula

to the form (4.35) in an attempt to address this problem, but verifying its accuracy

is difficult.
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4.3 Practical aspects of model refinement

4.3.1 The atomic model

I have not yet discussed the most significant limitation of the data, namely their

number. A typical high-quality diffraction data set includes 10,000 to 20,000 re-

flection measurements. A simple cubic unit cell 50 Å on a side contains 125,000

1 Å3 cubes. Thus the typical protein diffraction dataset cannot constrain a model

of the electron density which independently specifies the density in each such 1 Å3

cube; in such a model there are vastly more parameters than data.

To reduce the number of parameters, the electron density model is generated

from a polypeptide chain of spherical atoms. This is of course not accurate, but

is a sufficient approximation at the resolution of my work. Similarly, the use of

isotropic temperature factors in constructing the model is also acceptable.

A further simplification is to use stereochemical “dictionaries” (e. g. [128])

which include information about bond lengths, bond angles, and sometimes tor-

sion angles, all derived from high resolution small molecule and protein structures.

These are implemented as restraints in the likelihood functions above.

We need to be careful how much we favor the dictionary over our data. Re-

finement packages have various means by which this is achieved. A general overall

weighting parameter is used in a given refinement. This parameter can be var-

ied, the refinement begun again, and the results compared with other refinements.

Tighter constraints, favoring the stereochemical dictionary, are often needed for

lower resolution datasets.

In our work, we may reasonably expect that there will be deviations from some

kinds of parameters, and less deviation from others. For instance, we may expect
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that bond lengths will be quite rigid while torsion angles are less rigid. Therefore,

we will want more control over how the weighting is implemented. Refmac version

5[118] provides such control. Again, this balance must be determined empirically

through repeated attempts at refinement of the structure.

Some effort has been made to include multiple configurations of the protein in

the electron density model[129]. Lindorff-Larsen et al.[130] have used molecular

dynamics methods and NMR data to determine a possible ensemble of states of

the protein. In principle one could examine the full distribution of structures

and their probabilities defined by Equations 4.25 and 4.28. All such methods are

computationally expensive, and the number of states which we can realistically

model remains limited by our data.

This is a question of purpose. Do we need to know to 1 Å precision the po-

sitions of atoms, or do we need 0.1 Å precision? Until recently, stuctural biology

has proceeded without worrying much over this issue. As Quantum Mechanical

modelling of photosynthetic proteins (e. g. [131]) and studies such as my own move

forward, we will require better models and better data.

It must be said that the model itself can be a limiting factor, and our task very

much akin to fitting a straight line to exponentially distributed data. There will

be some limit to the precision for which we can hope.

4.3.2 Practical refinement indicators

Crystallographers do not generally examine the likelihood function when refining

their data (although they probably ought to do so.) Instead, the common progress
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indicators are the reliability index R,

R =
Σh∈WFo,h − gFc,h

Σh∈WFo,h
, (4.36)

and its companion, the “free” reliability index Rfree[132, 133]

Rfree =
Σh∈TFo,h − gFc,h

Σh∈TF o
h

, (4.37)

The sum is over some subset of the data, either the “working” set W used for

refinement, or a “test” set T (T ∩ W = ∅) in the case of Rfree, and g is some

Q-dependent factor meant to place the two sets of structure factors on an common

scale. It is determined much as the scale factors for merging data (Section 4.2.1).

As we refine the structure, R should decrease if the weighting parameters for

restraints are reasonable. We continue a given stage of refinement until R converges

to some value. That value should be examined carefully. Values above 0.3 for

good data sets of reasonable resolution (say 2 Å) should be considered suspect.

Frequently such a large value indicates that something else is wrong, and the

refinement will not proceed well from here. It may be necessary to return to model

building, or there could be an error in the initial data processing.

Once R converges, we have a second problem, pointed out by Branden and

Jones[132], and addressed by Axel Brunger[133]. Once we have begun a refinement,

R will of course decrease. It has now been biased by the refinement process, leaving

open the possibility of overfitting. In some spectacular cases such overfitting has

led to left handed helices appearing in final structures[132].

To calculate Rfree we set aside some data (on the order of 10%). This set must

be mutually exclusive with the working data set used for refinement. Rfree is used

for the purpose of making sure the refinement is not running off in some unphysical
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direction. It has become widely accepted as a good measure of the validity of a

structure.

It is important not to rely on Rfree as an indicator of the progress of refinement,

but rather to use it as a measure of the reliability of the final refined structure.

Particularly in the early stages of refinement, the sum in Equation 4.37 taken over

the test dataset is not in fact very accurate. Only as the refinement converges are

these parameters meaningful[124].

Most important to us, Rfree can itself be biased. Our refinement starts from

a previously refined model. Unless our “free” reflections are the same as for that

original model, some bias will leak in. In this case, it is often best to examine

the deviations and distributions of bond lengths, angles, et cetera to determine

the progress of refinement. In the final refinements here, I have relied heavily on

examining the distributions of bond angles and lengths to determine the quality

of refinement.

As it happens, most of the progress indicators yield essentially the same results.

Several are of these plotted in Figure 4.4. Small rises in most measures correspond

to the addition and removal of water molecules every 5 cycles of refinement. By all

measures, the bulk of the refinement is complete after only 5 cycles. Cruickshank’s

DPI continues to decrease very slowly, as does R. Bond length deviations from the

stereochemical dictionary decrease very little, and bond angle deviations decrease

very slowly. The negative log likelihood continues to decrease throughout the

refinement, but very slowly, despite the fact that Rfree increases slightly. The

extra refinement improves the structure slightly, primarily by properly modelling

water surrounding the protein.
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Figure 4.4: Progress of refinement for dataset mt2k1. R and Rfree are defined in

the text. DPI is given by equation 4.35, and is only plotted in Å every 5 cycles

of refinement. -LL is the negative logarithm of the likelihood function, Equation

4.28, divided by 300,000 to put it on a convenient scale. The rms bond length (in

Å) and bond angle (in degrees) deviations are also scaled so they are visible in this

plot.



102

4.3.3 Ramachandran plots

Another indicator of refinement success is the Ramachandran plot[105]. The pep-

tide bond itself is quite rigid, and planar. Thus two angles, φ and ψ determine

the backbone configuration of the protein. Figure 4.5 shows the geometry. These

angles are not restrained in refinement, but take on a limited subset of values in

real proteins due to steric constraints. Thus they are useful for identifying possible

problems with the model. Proline must be considered separately, since it is not

strictly an amino acid and lacks the same peptide bond. Glycine has no side chain,

and thus has much more relaxed constraints on φ and ψ. Good structures should

have 90% or more of their residues in the allowed regions of the Ramachandran

plot[134].

4.3.4 Electron density maps

A picture is worth a thousand statistics, and the numbers can only tell you that

something is wrong, not where. At the end of any step in refinement, one must

examine the structure carefully against the experimental electron density. Visual-

ization is crucial in building a model of a de novo protein structure.

Since the phases of the Fourier components F (G) are known only from the

model, we will use these for both the experimental and calculated electron density.

Thus the electron density is not entirely accurate, and often appears to be quite

confusing until well into the refinement process. The “maps”, as they are known,

are calculated as[105]

ρm,n(x, y, z) =
1

Vcell

∑

h

(mFo,h − nFc,h)e
−2πi(hx+ky+lz)+iαc , (4.38)

where m and n are generally integers. Vcell is the volume of the unit cell, and x, y, z
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Figure 4.5: The peptide bond. Torsion angles φ and ψ are shown. From

www.fkem2.lth.se/education/kursinfo/biofysikalisk kemi/kursmaterial/

laborationer/ramachandran2004.htm

are fractional coordinates relative to the unit cell lengths (so that, e. g. , 0 6 x < 1).

Setting m = 2, n = 1 approximates the experimental electron density, but includes

“highlights” where the model disagrees with the data. It is useful particularly in

initial modelling. The difference map constructed with m = 1, n = 1 is especially

useful when looking for small changes (as those due to pressure) or positional

errors.

As we’ll see later in this dissertation, the electron density maps provide the

best way of determining model completeness. If the model is incomplete, both the

2Fo − Fc and difference maps should have large (3 standard deviations) positive
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peaks. This is akin to the calculation of OMIT maps, which intentionally leave

out parts of a questionable model. The omission biases the map to the remaining

structure, so that any remaining density in an ambiguous region should be more

reliable.

Other maps are frequently useful. I will leave their details to later chapters,

where they are more topical.

Maps are generally displayed as a surface of constant value. This contour value

is usually specified in increments of the standard deviation of electron density in

the map, σ. Maps can be contoured at absolute electron densities, but we are most

often interested in looking at unusual peaks or noisy areas, so scaling in terms of

σ is adequate.

4.4 Refinement protocol and results

4.4.1 Procedures

The exact procedure used to refine molecules for this work has been made as

automatic as possible in order to minimize errors and make comparisons between

solved structures as meaningful as possible. Master scripts generate the actual

scripts used by the CCP4 suite to refine protein structures.

Data were integrated and scaled using DENZO[114] at the CHESS computing

facilities. Structure factors and uncertainties were converted to the CCP4 format

and refined using CCP4 software, freely available at www.ccp4.ac.uk. Refinement

of each dataset proceeded as follows:

1. Perform rigid body refinement of the molecule using the atomic model avail-

able from the Protein Data Bank (www.rcsb.org), either 1L63 for WT* or



105

1L90 for L99A T4 lysozyme, and Refmac version 5[118].

2. Perform ten cycles of restrained refinement using a final global restraint

weight of 0.3 in Refmac version 5, alternating with automatic electron density

map refinement using arp waters (described in detail below).

3. Examine the model and 2Fo−Fc and Fo−Fc maps using the program O[135].

When examining the electron density maps, it became clear that some mea-

sure of subjectivity could lead to significantly different final results, at least in

modelling solvent water molecules. I adopted the use of the program arp waters,

as implemented in the CCP4 package, to make possible more objective analysis.

The program determines points of correlation between the 2Fo − Fc and Fo − Fc

maps and subject to user-specified rules adds or removes water molecules from the

model. The main parameters are:

1. A cutoff in the 2Fo−Fc map, below which water molecules should be removed

(set to 1 standard deviation of the map electron density).

2. A cutoff in the difference map above which water molecules should be added

(set to 3 standard deviations).

3. Maximum numbers of water molecules to add or remove in one cycle (set to

20 and 10 respectively).

After one cycle of adding and removing water molecules, a form of real space

refinement is used to position the added oxygen atoms. It is then necessary to

perform restrained refinement again.
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The R values change very little when adding and removing individual atoms,

highlighting the need to examine the maps and build the model manually. Simi-

larly, the refinement should be monitored frequently to ensure that it is proceeding

acceptably.

In this work, an enormous number of refinements was necessary to globally de-

termine the best parameters. For consistency, I wrote a Perl script (www.perl.org)

to generate CCP4 refinement scripts. One set of parameters was then used to re-

fine all data sets. The set of parameters which optimized the datasets globally was

used to refine the final models discussed in the next two chapters. This procedure

should minimize artifacts between models.

In the final models, difference maps (Fo(p)−Fo(0)) exp(iαc(0)) were calculated,

using the ambient pressure model-calculated phases αc(0), to verify the presence of

water molecules in the cavities and any other pressure-induced differences. These

maps will be described in more detail in Chapter 6.

4.4.2 Robust model quantities

One key point that is evident from the discussion of error above is that there are not

particularly robust methods of estimating coordinate error on an atom by atom

basis. Exceptional data and model fitting are required to make such estimates

reliable and meaningful. In our case, the assumptions made in refinement, and

even the model itself, are not particularly realistic, making the situation seem

even more grim. We will be very concerned with uncertainty when we examine

high-pressure effects on protein structures, and so we must consider how we will

establish meaningful uncertainties.

I have taken a few different approaches to this problem. We can gain some
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qualitative sense of the robustness of refinement by synthetically adding noise to

real data and rerefining the structure. By repeating this procedure many times

we can see how noise in the data propogates into our structure. The results are

not surprising. Uncertainties increase with decreasing average structure factor

amplitudes. With more noise, the refinement is much more sensitive to the restraint

weighting parameters, and the atomic positional uncertainties concurrently larger.

R and Rfree do in fact correlate with uncertainty, but this can be masked by fitting

with different restraint weighting. Finally, it is crucial that the refinement has fully

converged, or any estimation of error is invalid.

A better, more concrete method of error estimation is to first collect more data.

With one data set we cannot really make any statistically significant statement.

I have collected two or three data sets for each mutant at most pressures, and

this will allow real experimental estimates of uncertainty rather than speculative

estimates.

Even in the face of large uncertainties, we can reduce the error in measurable

quantities by averaging over many atomic positions. Given N observations Oi,

with weights (often derived from uncertainties) wi, the average O is

O =
1

N

∑

wiOi, (4.39)

so that uncertainties in the individual Oi propogate to the average quantity as

σ2(O) =
∑

σ2
i

(

∂O

∂Oi

)

=
1

N2

∑

σ2
iwi

= σ2/N. (4.40)

In the last line, we have assumed that all errors are the same and the weights

wi are all one. Then the error of the averaged quantity scales as N−1/2. For a
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helix, which may contain 100 or more atoms, the uncertainty for the center of

mass may be quite small. 10 or 20 atoms may even reduce uncertainty enough to

make meaningful conclusions. Some changes in the structure may be visible above

the uncertainties derived from examining multiple datasets; in other cases it may

be necessary to examine averaged quantities.

Finally, there will be situations where the atomic coordinates are simply not

the correct object of study. We must remember that the fundamental quantity in

x-ray scattering is electron density. By comparing the diffraction data at various

pressures, we can examine the electron density for changes and make some con-

clusions about changes to the atomic structure based on these. This is our only

recourse when we search for missing parts of the atomic model, and is a useful

fallback if the model has large uncertainties.

4.4.3 Refinement statistics and review

The results of all refinements are listed in Table 4.2. As one can see, the refinements

were quite successful based on these statistics. The standard uncertainties listed in

the table are a modified form of the DPI discussed above, more appropriate to the

maximum likelihood formalism used in Refmac 5. See the program documentation

for more details (www.ccp4.ac.uk). These uncertainties hover around the 0.1 Å

level, which as we’ll see in the next chapter is about what we determine from

comparing multiple nominally identical structures.

The Ramachandran plots for all structures, wild-type and mutant, are all vir-

tually the same. In almost all of the structures, residues Ile29 and Phe114 are

slightly outside the normal range of φ, ψ values. (A typical plot is shown in Fig-

ure 4.6 on page 111.) This number of outliers is not at all abnormal, but it is still
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Table 4.2: Refinement statistics. r, resolution range used in refinement. R and

Rfree defined in the text. esu is the estimated standard uncertainty based on

the Refmac 5 maximum likelihood refinement. Rms bond lengths and angles are

the root-mean-square deviations from the optimal values in the stereochemical

dictionary (see text).

Name r (Å) R Rfree esu (Å) rms bond rms bond

lengths (Å) angles (◦)

mt0k1 52.78-2.40 0.16027 0.21198 0.141 0.020 1.564

mt0ka 52.78-2.40 0.14414 0.19725 0.127 0.019 1.538

mt0kb 52.78-2.40 0.15023 0.21790 0.142 0.021 1.647

mt1k6 52.63-2.10 0.17015 0.21193 0.112 0.017 1.560

mt1k7 52.63-2.15 0.16586 0.21857 0.118 0.018 1.485

mt1k9 52.63-2.10 0.17177 0.23190 0.126 0.019 1.533

mt1.5k1 52.56-2.10 0.16449 0.21365 0.109 0.016 1.441

mt2k1 52.49-2.10 0.15785 0.19819 0.097 0.015 1.294

mt2k3 52.49-2.20 0.15780 0.20834 0.115 0.016 1.398

mt2k8 52.49-2.11 0.16069 0.20365 0.099 0.016 1.394

wt0ka 52.70-2.19 0.15558 0.22860 0.132 0.019 1.596

wt1k6 52.63-2.10 0.16117 0.22212 0.107 0.016 1.446

wt1k7 52.56-2.10 0.15743 0.21417 0.098 0.015 1.357

wt1ka 52.56-2.19 0.15017 0.20298 0.101 0.016 1.363

wt2k1 52.41-2.01 0.16007 0.21022 0.091 0.013 1.308

wt2k2 52.41-2.01 0.15860 0.21314 0.090 0.014 1.280
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worthwhile to look at the electron density around these flagged residues. Examin-

ing the electron density around Ile29 (Figure 4.7 on page 112) indicates that the

density is strong, so that this is little cause for concern.

In Figure 4.6, Ala112 is also barely outside the normal φ, ψ range; of all the

refined structures, this is the only one in which Ala112 is outside the normal range.

The density around residues 112-114 is a bit weak. In this region (the C-terminal

end of helix F) the side chains are often in stronger density than parts of the main

chain, and appear to constrain the main chain atoms. Helix F is typically less

well ordered than the rest of the protein, even in the wild-type protein (private

communication with Brian Matthews).

4.5 Summary

In this chapter I have laid out the basic principles of macromolecular crystallogra-

phy. It is by no means a complete description. I wish to convey the sense that it is,

despite much effort by many brilliant scientists, a somewhat tenuous process. We

must be careful what we say about a structure, even if the refinement converges to

excellent values. That said, the data appear to be very satisfactory. Uncertainties

should be small, and the structure reliable. Keeping in mind the vagaries of the

atomic model and error estimation, and any suspect positions in our specific struc-

tures, we may now begin to examine what actually happened to these molecules

under pressure.
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Figure 4.6: Ramachandran plot for structure mt2k8. The grey regions show

allowed combinations of φ, ψ main chain torsion angles. Outliers are labelled

with their residue name and number. Glycines, which are much less restricted,

are shown as open squares. Figure made with MOLEMAN2, available from

http://xray.bmc.uu.se/usf.
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Figure 4.7: Electron density near Ile29 Cα in structure mt2k8. 2Fo − Fc electron

density contoured at 1σ in magenta. The density is not noisy, is quite smooth, and

is well fit by the model, despite the Ramachandran outlier Ile29.



Chapter 5

Structure of T4 lysozymes at high

pressure

One possible reaction of a cavity containing protein to pressure is the structural

collapse of that cavity. More generally, pressure will cause compression of part or

all of the protein. In this chapter I will describe the observed changes in the model

structures of the L99A and WT* T4 lysozymes. I begin with a survey of some

of what is known about the structure, and follow that with a detailed description

of how I compared structures. The observation that the model is incomplete as

pressure increases–namely that the cavity fills with water–will be discussed in the

next chapter.

5.1 T4 lysozyme at ambient pressure

5.1.1 Static structure

As noted in Chapter 1, T4 lysozyme has ten α-helices, a β-sheet, and is composed of

two domains. The N-terminal domain is a mix of helices and sheet, and is somewhat

smaller than the seven α-helix C-terminal domain. The domains are connected by

a long α-helix (residues 60-80.) The molecule’s structure is remarkably robust to

mutation, as evidenced by the studies of the Matthews group at the University of

Oregon.

The primary cavity of mutant L99A is actually an extension of a roughly 50 Å3

cavity found in the wild type protein (Figure 5.1 on page 115). The mutation

113
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increases cavity volume by roughly 120 Å3. Otherwise the structure of the L99A

mutant and its parent WT* are virtually identical. The backbone rms deviation

is only 0.1 Å[48]. The cavity is slightly larger than one would expect if the struc-

ture did not relax at all. The largest differences between L99A and WT* are

a movement of Val87 0.4 Å away from, and Tyr88 0.5 Å towards, the mutation

site[48].

5.1.2 Known modes of structural change in T4 lysozymes

Substantial NMR evidence[34, 35, 136] and simulation suggests that T4 lysozyme

has both very rigid and very dynamic parts. Simulation by molecular dynamics[15]

has indicated that the C-terminal and the N-terminal domain, as well as the linker

helix are each individually rigid, while the three components move relative to each

other by as much as 8 Å. The active site is between the C- and N- terminal domains;

presumably these fluctuations represent comformational flexibility related to the

mechanism of the protein.

A different issue altogether is the fluctuation of side chains. While it is known

that the L99A cavity is accessible to noble gases[39] and also to benzene and ben-

zene derivatives[50], there is no solvent accessible path into the cavity in the L99A

structure determined by x-ray crystallography. Clearly there must be fluctuations

which make the cavity transiently accessible to the outside solvent. Amide ex-

change studies mentioned in Chapter 1[34] suggest that the hydrophobic core of

the WT* mutant is solvent accessible even at low pressures. NMR studies[136]

indicate that ligand binding is very rapid.

While the amide exchange studies indicate a wide variety of pathways into the

molecule, other NMR studies by Mulder et al.[35] have specifically probed for states
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Figure 5.1: Primary cavity of psuedo wild-type and L99A T4 lysozymes. The cavity

of L99A (main image) is an extension of a cavity present in the wild type lysozyme

(inset). Letters indicate helix designations. Spheres in the inset represent the WT*

Leu99 side chain, which is truncated to Alanine in the L99A mutant. This view

is through the F helix (not shown) into the cavities; the E helix is shown center,

just above the cavity. The cartoon insert shows the orientation of the molecule.

See Figure 5.3 for a complete description.
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in which there is access to the L99A cavity. They observe a marginally populated

excited state (∼ 3% at room temperature, ∼ 2 kcal/mol above the ground state) in

which the L99A cavity is accessible to surrounding water. The transition involves

the C-terminal end of helix E, helices F and I and loops connecting these helices to

the rest of the protein. (Figure 5.1 is a view through the F helix (not shown) into

the cavity; helix I is a one turn helix between H and J, which are left and upper

left of the cavity in the figure. The mutation L99A is squarely in the middle of

helix E.)

5.2 Methods of structure comparison

Beyond the basic, somewhat subjective features of structure, we would like to be

able to measure specific, quantitative changes. This requires some quantitative

notion of what the structure is. The α-carbon backbone positions are often used

and are thought to be most robust, but this lacks detail. Feeling that there is

no particular reason to choose the α-carbons over, say, the amino nitrogens, I’ve

chosen to make comparisons of the backbone based on the four backbone atoms:

Cα, C, N, and O. Side chain comparisons may also provide useful information, but

side chains are generally more disordered and therefore subject to more uncertainty.

The orientation of helices can also be calculated and compared to observe rotations.

Whatever we do, we must be careful to follow the recommendations of Chapter 4,

and care must be taken to properly orient the molecules for comparison.

We will also compare the total molecular volume and the volume of cavities

in the protein, in particular the void left by the L99A mutation. Calculating and

visualizing these volumes is not trivial, but established methods exist.
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5.2.1 Orienting molecules for comparison

Any set of coordinates {ri} can be linearly transformed by rotation, translation,

scaling and shearing. In general these operations do not commute. The most

general unitary transformation consists of a rotation R and a translation r0:

r′ = Rr + r0. (5.1)

Where R is a 3 by 3 matrix. For the transformation to preserve distances (as for a

pure rotation), the matrix R must be unitary. Minimizing the difference between

two structures a, b with the residual

∑

i

1

wi

(r′
a,i − r′

b,i)
2, (5.2)

where the sum is over all atoms i, we determine an optimal alignment of the two

structures. The weights wi must be chosen appropriately. I have generally set them

to one, since I cannot reliably say that the uncertainty in one atomic position is

greater or less than another specific atomic position. Now the two structures may

be compared in terms of their coordinates. Deviations may be calculated and so

forth.

Implementation

One goal of my work was to establish more empirical positional uncertainties than

have been quoted in the past. This ultimately requires the simultaneous alignment

of more than two structures. The following describes the program I wrote for this

purpose.

Equation 5.2 was implemented in Perl (www.perl.org). Perl was chosen for

its ability to efficiently parse text files, useful for handling Protein Data Bank

(www.rcsb.org) structure files. The code is listed in the appendices.
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The process is shown schematically in Figure 5.2. First the pdb files are read

in and “vetted”. This step involves parsing the PDB file for coordinates, masses,

temperature factors, and other important information. Then the program discards

atoms which are not to be compared, keeping only a user-selected subset of the

structure. The code is very flexible in this regard. Next each molecule’s center

of weight (not necessarily mass) is moved to the origin. A transformation (gen-

eral linear or pure rotation) is calculated and applied to each whole molecule’s

coordinates. New coordinates are written in PDB format, and a log file records

the transformations made, as well as a root-mean-square deviation for all atoms

compared. Optionally, a distance difference matrix can be calculated between

structures a, b according to

Dij = |r′
a,i − r′

a,j| − |r′
b,i − r′

b,j|. (5.3)

The distance difference map has the advantage of being independent of the trans-

formation. However, such maps are not particularly easy to interpret. I have not

used them here.

There are two reasons to align molecules in this fashion. The most obvious

is to examine differences between molecules at different pressures. We may also

wish to align the models derived at one pressure in order to estimate uncertainty

in atomic positions. In this case, the models derived in step (d) of Figure 5.2

will be averaged, and the rms deviations from that structure determined. The

averaging could be of any sort: we might average positions of atoms, side chain

dihedral angles, or even derived quantities such as helical axes (discussed below).

Uncertainties can thus be estimated for any parameter.
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a

b

c

d

Figure 5.2: Alignment and structural averaging. (a) Three structures from refine-

ment. (b) Part of the molecule is selected for alignment. (c) The selections are

aligned. (d) The transformations generated in (c) are applied to the molecules in

(a). The structures may now be averaged or compared.
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Selective structure comparison

To observe changes in a molecule, one must ask the right questions. For instance,

if we expect helices to be extremely rigid internally, but to rearrange relative to

each other, we may wish to highlight this effect by aligning two structures at

different pressures using only one helix. A second helix will then be shown is its

orientation relative to the first and our expectation can be tested. Similarly, it

may be interesting to compare the RMS deviations of the backbone to that when

side chains are included.

I have tried several such selective alignments. The numbers reported here are

based either on whole molecule alignments, or alignments of the C-terminal domain

(residues 82 through 162). In all cases, only the backbone atoms were used unless

otherwise specified.

Multiple structure comparison

Equation 5.2 can be minimized analytically when it is used for only two structures.

There is no simple analytic solution for three or more structures, although the extra

data included surely makes the data more robust. To make such comparisons I

have used a simplex fitting algorithm (see Numerical Recipes[125] for a discussion of

the method) from the Perl Data Language1. Also, one must decide which residual

should be used and reported. We may choose to calculate a pairwise rms for each

pair of molecules and then average over all pairs; alternatively, we may choose

to average atomic mean square deviations over molecules first, then sum over all

atoms to be compared. (The difference arises because the residual is of the root-

1PDL::Opt::Simplex. For this and other useful Perl modules, visit the Compre-
hensive Perl Archive Network at www.cpan.org.
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mean-square form. As it happens the two forms do not give substantially different

results, and the only reason I chose the latter form was to gain a sense of individual

atomic positional uncertainties.)

When there are more than two data sets for a given mutant at one pressure,

this procedure is used to align the molecules before real space averaging. Averaged

structures at different pressures can be easily compared.

5.2.2 Orientation of helices

Based on the method (and code) of Kumar and Bansal[137], I have written a

Perl script to calculate the positions and orientations of helices, and output a

visual indicator of this orientation for protein graphics programs. Briefly, the

method is as follows: select the first four Cα atoms at the start of a helix. Then

calculate the difference vectors between the first and third, and second and fourth

Cα positions. The cross product of these two difference vectors defines the local

helical orientation. The “box” of four atoms is then shifted one residue along the

chain, and the procedure is repeated until we can go no further along the helix.

This an effective tool for quickly assessing structural changes in proteins.

5.2.3 Volume calculation

Molecular and cavity volume calculations are in principle a good indicator of ex-

actly how a molecule is compressing. There are a number of ways of calculating

volumes, all of which are subject to some caveats. The most pervasive problem is

that small changes in atomic positions can lead to large changes in cavity volume.

Molecular volumes in general are difficult to define, and so should always treated
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with skepticism.

All current methods use the concept of a probe sphere which is rolled along the

locus of spheres of atoms in the molecule2. The locus of points traced out by the

center of the probe sphere is called the solvent accessible surface. The volume from

which any part of the probe is excluded is called the solvent excluded volume and is

bounded by the molecular surface. The radius of the probe is taken to be 1.2 Å in

this thesis, and the atomic radii are chosen to emulate Michael Connolly’s original

program MSP[138], which is no longer available. These are approximately the van

der Waal’s radii of water and the individual atoms, respectively. This choice is

consistent with the previous work on T4 lysozyme[48].

The actual method used to calculate that volume varies. The “rolling probe”

method, though conceptually simple, is difficult to implement and is not generally

used. Here, we will discuss only two implementations, which illustrate grid based

techniques and more sophisticated analytical techniques.

Grid based techniques

A grid based approach is implemented in the program VOIDOO[139]. The basic

idea is simple. One creates a cubic lattice of some spacing (generally about 0.5 Å),

and asks whether each lattice point is within a certain cutoff distance (the probe

radius plus the atomic radius) of each atom in the molecule. This implementation

uses a “flood-fill” algorithm. Each grid point is given a value zero. Then, if a grid

point is within the cutoff distance from any protein atom, it is reassigned the value

one. The faces of the lattice (“the outside world”) are reset to zero. We now take

any point on the faces of the lattice whose value is zero and reset it to two. The

2Most software ignores water molecules.
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process is repeated for neighbors of this point whose values are also zero, and so

on. Since we begin from the outside, by the time the iteration has finished, any

point whose value is still zero must be inside a cavity.

An obvious problem is that the grid spacing is quite important. A more insidi-

ous problem is that the orientation of the cavity with respect to the grid can affect

its apparent volume. Nonetheless VOIDOO still yields reasonable and consistent

results. Since it deals explicitly in real coordinates of the cavity wall, VOIDOO is

especially useful in visualizing the shape and location of each cavity.

Analytic techniques

Edelsbrunner has developed an interesting and aesthetically pleasing method of

determining the volume of protein voids based on an analytically calculated alpha

shape[140, 141]. The full description is complicated, but again the basic idea is

simple. We begin with a point at the center of each atom in our structure. Each

point swells into a growing sphere until it intersects the spheres representing its

neighbors. When two spheres intersect, their centers define a line segment of

the alpha shape; when three mutally intersect, it defines a triangle; four mutally

intersecting spheres define a tetragonal pyramid. Each sphere swells until its radius

is the radius of the atom plus the radius of the “probe sphere” (i. e. 1.2 Å).

Those regions of space not inside tetragonal pyramids of the alpha shape are voids.

The volume of the real void is the volume of the polygonal void minus a term

representing the parts of atoms inside the polygonal representation.

This algorithm resembles the older Voronoi decomposition method, but over-

comes certain technical difficulties, especially with the molecular envelope. The

chief advantage of the alpha shape method is that its results are independent of
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molecular orientation or any grid. It only depends on the probe sphere size and

the atomic radii.

Michel Sanner’s MSMS program[142] is mathematically similar to the alpha

shapes method, although the program is implemented differently.

5.2.4 Detection limits

Paul Urayama[9] has pointed out that the expected structural changes in proteins

under pressure will fall in two categories, bulk properties (such as compression,

volume, et cetera) and motions of specific atoms or secondary structure elements.

We have already seen that the former are considerably more robust, but we nonthe-

less expect any changes will be small. The crystallographically determined volume

compressibility of hen egg white lysozyme was ≈ 5×10−3 kbar−1[12], while that for

myoglobin was about 9 × 10−3 kbar−1[9]. For a spherical protein this corresponds

to a change in radius of about half a percent for a pressure increase of 1 kbar. For

T4 lysozyme, having a volume of about 20,000 Å3, that corresponds to slightly less

than 0.1 Å.

Pressure changes are not likely to be isotropically distributed in such an in-

herently anisotropic medium. The molecule is made up of secondary structure

elements held together with highly oriented hydrogen bonds and steric constraints

that depend strongly on the orientation of the main chain and neighboring side

chains.

In this work, an effort was made to collect sufficient data on which to base

statistical conclusions about uncertainty. In the case of the L99A mutant, there

are three data sets at each of three pressures, plus one more at 1.5 kbar. I have

somewhat less data for the WT* structure, and so any conclusions about it are
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less robust. Nonetheless some variance can be estimated there as well. To assert

that there is a meaningful structural change, I require that the change is at least at

the level of uncertainty in the parameter, and to say anything strongly, that it be

considerably larger than the uncertainty. In the former case, we are greatly aided

by visual examination of the structure, where it is possible to unambiguously see

whether some motion is in fact concerted, or whether it is an artifact.

5.2.5 A note on isotropic scaling

I have chosen not to scale molecules by an overall factor. The reason is simple: it

explicitly violates the stereochemical restraints used in refinement, and physically

misrepresents any realistic behavior of the molecule. As was discussed in Chapter

1, proteins should compress anisotropically, due to the varying effects of pressure

on the different interactions stabilizing the protein in its folded state. In particular

we expect covalent bonds to be nearly incompressible over the range of pressure

used here, and so isotropic scaling is inappropriate. Moreover, we are attempting

to highlight, not dismiss, differences. We hope to attribute changes in volume to

structural rearrangement, not changes in bond lengths. I have had to give up this

goal in the sense that averaging structures in real space is not inherently consistent

with the restraints either. However average bond lengths and angles should remain

the same after real-space averaging, only the distribution will widen. Moreover this

is the only way in which to simultaneously use all of the data in refinement and

construct useable estimates of the variance in atomic positions without appeal to

some heuristic formula. No such justification can be made for isotropic scaling.
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5.3 Observed changes in the structure of T4 lysozyme at

high pressure

Both the wild type and L99A mutant lysozymes change almost not at all when

subjected to pressure. That the compact C and N terminal domains change so little

in the WT* lysozyme is not particularly surprising. While the N and C terminal

domains do displace relative to each other, they do not grow closer or farther apart,

which we might have expected from molecular dynamics simulation[15]. (The

experimentally determined distance between the domain centers of mass changes

less than 0.06 Å at 2 kbar.) As we’ll see the two molecules are virtually identical

at high pressure, but for the few missing atoms in the L99A lysozyme. The details

are described below. Interpretation of the results will be left for the final chapter.

5.3.1 Overall changes in unit cell and molecular volume

Crystals of T4 lysozymes grow in spacegroup P3221, with the (unique) c axis being

roughly 1.5 times longer than the a and b axes. The unit cell compresses essentially

linearly with pressure, with the c-axis being softer than the a or b axes. The c-axis

decreases 1.0% from about 96.5 to about 95.5 Å over 2 kbar, while the a- and

b-axes decrease 0.5% from about 60.9 to 60.6 Å. At any given pressure, the unit

cell parameters cluster tightly. The L99A unit cell is slightly larger than the WT*

unit cell, and this difference is maintained throughout the pressure range studied.

As pressure increases to 2 kbar, the unit cell volume decreases roughly 2 percent

for both the psuedo wild-type and the L99A cavity mutants. Urayama[9] quotes

similar changes in unit cell volume for sperm whale myoglobin at 2 kbar. Kundrot

and Richards[12] reported a 1.1% decrease in unit cell volume for Hen Egg-White
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Lysosyme at 1 kbar.

The L99A molecular surface volume (Table 5.1) decreases from 21,090 Å3 to

20,890 Å3 over 2 kbar, a change of slightly less than 1 percent. The WT* volume

decreases from 21,070 Å3 to 20,860 Å3 at 2 kbar, again slightly less than 1 percent.

This is our first indication that the molecule will change very little as we increase

pressure.

5.3.2 Changes in cavity volume

Table 5.1 lists the cavity volumes for the nine L99A models using the AlphaShapes

package described above. The cavity volumes do not cluster as well as the cell

parameters, but this is to be expected given that volume errors are additive (volume

is not an average quantity). The cavity volume decreases on average as pressure

rises from 1bar to 2 kbar, though by barely more than 3 percent. This is interesting,

since the molecular volume changes by only 1 percent, and the unit cell volume

decreases by only 2 percent. I am reluctant to put much faith in this difference,

because of the extreme difficulty in assigning any meaningful uncertainty to these

volumes. Probably the unit cell volume is robust, and the molecular envelope

volume is also probably fairly accurate, but the uncertainty in the cavity volume

is clearly on the order of the changes we observe. It is clear that there is some

compression, and we must leave it at that.
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Table 5.1: Cavity and molecular envelope volumes for the void created in the

L99A mutant lysozyme, calculated using the AlphaShapes package[140, 141]. All

volumes in Å3.

dataset nominal P (kbar) L99A Vcav Average Vcav Vmol Average Vmol

mt0k1 183.6 21118

mt0ka 0 188.0 185.3 21092 21088

mt0kb 184.2 21052

mt1k6 178.1 20971

mt1k7 1 184.9 181.4 21006 21000

mt1k9 181.3 21024

mt2k1 174.8 20854

mt2k3 2 183.6 179.5 20922 20894

mt2k8 180.0 20905

5.3.3 Radii of gyration

The radii of gyration are defined in terms of the masses mi and coordinates of

atoms in the molecule:

Rg =
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∣
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(5.4)

Since proteins are not in fact spherical, we would also like to know their moments

of inertia. The inertia tensor is

Iαβ =
∑

i

mi

[

−ri,αri,β + δαβ

∑

α′

r2
i,α′

]

. (5.5)
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It has eigenvalues Iγ where the γ are the principal axes of the inertia. The radius

of gyration Rγ taken along axis γ is related to the Iγ by

R2
γ = M−1

tot Iγ , (5.6)

where Mtot is the total mass of the molecule, and R2
g = (1/2)

∑

γ R
2
γ .

Table 5.2 lists the radii of gyration for both WT* and L99A T4 Lysozymes,

calculated only from the average structures at each pressure. (The differences

between structures are, as we’ll see below, so small that the errors in these averaged

parameters should be quite small.) The principal axes are shown in Figure 5.3.

The largest changes are perpendicular to the axes between the C- and N-terminal

domain centers. This could indicate relative motion of the two domains.

Table 5.2: Radii of gyration in Å for L99A and WT*. Pressures are nominal and

moments calculated based on all-atom aligned and averaged structures at each

pressure.

Pressure Rg R1 R2 R3

L99A

1bar 16.50 15.95 13.53 10.34

1 kbar 16.46 15.93 13.49 10.29

2 kbar 16.43 15.91 13.45 10.28

WT*

1bar 16.46 15.92 13.50 10.31

1 kbar 16.44 15.91 13.48 10.28

2 kbar 16.40 15.89 13.43 10.26
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Figure 5.3: Principal axes of the inertia tensor. The first principal axis points

roughly from the center of the C-terminal domain to the center of the N-terminal

domain. Colors indicate the various structural elements. Helix A is in dark blue,

helix C is green, helix E is yellow, and helix J (the final long helix) is red. These

colors will be used for orientation throughout this chapter.
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5.3.4 Differences in temperature factors

One comparison not discussed above is the difference, between high and low pres-

sure, of the temperature factors B = 8π < x2 >. “Colder” regions (of smaller B)

have smaller fluctuations about their average positions. We must be careful not to

associate this parameter with a measure of positional uncertainty. Rather is is a

measure of each atom’s freedom to move about in the molecule.

The cavity region of the L99A mutant is curiously the “coldest” part of the

molecule (see Figure 5.4), both at ambient and high pressure. The effect is even

more startling for the side chains (which for clarity are not shown) where residues

actually bordering the cavity are apparently the most constrained in the entire

molecule. This may be further evidence that fluctuations of side chains are pri-

marily collective as discussed by Mulder et al.[95]. If this were the case we might

expect that one mutation would have little effect on the conformational flexibility

of side chains. The main effect of pressure on temperature factors is a decrease of

the temperature factors of the molecule by about 1-5 Å2 as the pressure is raised

from ambient to 2 kbar.

Plotting the main-chain residue averaged B-factors against residue number

(Figures 5.5 and 5.6) demonstrates the same overall trend with pressure. We

also see excellent reproducibility of the general features of the B-factors, increas-

ing our confidence in the results. One point of possible concern is that the decrease

of B-factors with temperature seems to “stall-out” at 1 kbar in the L99A mutant,

while they decrease continuously in the WT* protein. It is not clear why this

should be. A number of factors, including crystal mosaicity and disorder, and

uncertainties from data collection, contribute to the “crystallographic B-factors”.
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Figure 5.4: Main chain B factors of the L99A mutant. Left, ambient pressure,

right, 2 kbar. Yellow corresponds to values of 30 Å2 and above, red to values to

values near 20 Å2, and purple to values of 10 Å2 and below.

Thus they include more than simple Debye-Waller factors, and are presumably

subject to somewhat more error. Recent evidence suggests that pressure tends to

improve the mosaicity of protein crystals[24], though how much of our observed

trends can be explained this way is unclear. Moreover, while it is possible to con-

struct an empirical error for the B-factors by comparing many different datasets,

that uncertainty is large (∼5 Å2 or more) and varies a great deal from crystal to

crystal and between datasets of different pressures. I cannot at this point assign

any meaningful uncertainty to these parameters. In the absence of substantially

more data, I am reluctant to say any more than this.
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Figure 5.5: Main chain B factors of the L99A mutant at three pressures. Values

are averaged over datasets at each pressure. B-factors in Å2. Uncertainties have

not been determined for the B-factors, see text.

5.3.5 Empirical uncertainties

Table 5.3 shows the root mean square displacement (rmsd) of atoms for all struc-

tures at one given pressure, for alignments based on several different subsets of

atoms. (Since there is only one WT* dataset at ambient pressure, it is omitted

from the table). Generally speaking the values are very low, and bracket the stan-

dard uncertainties derived from maximum likelihood refinement (see the previous

chapter). The differences between the rmsd values for the main chain (MC) and the

whole molecule (MC+SC) decrease as pressure is increased. Based on the table,

we can generally trust that any pressure-dependent aggregate main chain displace-

ment larger than 0.1 Å is real. By examining differences between several published
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Figure 5.6: Main chain B factors of the WT* protein at three pressures. Values

are averaged over datasets at each pressure. B-factors in Å2. Uncertainties have

not been determined for the B-factors, see text.

myoglobin structures, Urayama[9] also concluded that 0.1 Å displacements were

detectable.

We may still be suspect of individual atomic displacements, as has been dis-

cussed. An examination of these uncertainties, derived during the alignment and

averaging procedures, shows that there are not regions of particularly large or

small uncertainty. For the most part, the uncertainties are uniform. There are

small peaks in uncertainty near residues 40, 80 and 110. The last of these cor-

responds to a region of poor electron density, as discussed at the end of the last

chapter.
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Table 5.3: Root mean square deviations, in Å, between models at identical pres-

sures. Alignments based on either the peptide chain (MC) or all atoms (MC+SC),

either on all residues (no label) or the C-terminal domain (CT) from residue 82

to residue 162. Pressures listed are nominal; exact values and other pertinent

information about the data sets can be found in Table 3.1.

P (kbar) MC MC+SC MC CT MC+SC CT Models

0 0.088 0.185 0.096 0.195 mt0k1, mt0ka, mt0kb

1 0.088 0.210 0.092 0.239 mt1k6, mt1k7, mt1k9

2 0.066 0.152 0.065 0.135 mt2k1, mt2k3, mt2k8

1 0.068 0.160 0.079 0.180 wt1k6, wt1k7, wt1ka

2 0.045 0.134 0.044 0.099 wt2k1, wt2k2

5.3.6 Observed displacements at pressure

After alignment, structures at a common pressure are averaged, and these struc-

tures may be compared for differences due to pressure.

Table 5.4 lists the rms values calculated for alignment of the averaged main

chain structures based on the C-terminal domain only, the N-terminal domain only,

or for the whole molecule. The C- and N- terminal domains yield values which,

as we would expect, are in all cases are smaller than the the whole molecule. The

rmsd values to the ambient pressure reference structure do increase as a function

of pressure. Since the rmsd values over each domain are quite similar, and the

whole molecule values somewhat larger in most cases, I interpret this as a sign of

domain realignment as pressure increases.

Figure 5.7 on page 137 shows the magnitude of displacements (in Å) between

the averaged L99A or WT* models at 2 kbar and the corresponding models at



136

Table 5.4: RMS displacements in Å between low and high pressure structures. For

each pair of pressures, the left number is the rms for the C-terminal domain only,

the right number for the N-terminal domain, and the number in parenthesis the

rms is for the whole molecule.

L99A 1 kbar 2 kbar

0 kbar 0.103/0.105 (0.119) 0.133/0.137 (0.171)

1 kbar 0.069/0.075 (0.084)

WT* 1 kbar 2 kbar

0 kbar 0.079/0.079 (0.093) 0.124/0.134 (0.164)

1 kbar 0.069/0.079 (0.089)

ambient pressure when the molecules are aligned on the C-terminal domain. Figure

5.8 shows the same displacements when the molecules are aligned using the main

chain atoms of the N-terminal domain (residues 13-58.) Figure 5.9 shows the

displacements for L99A at three different pressures. Each of these is averaged over

a 5-residue wide window.

A number of potentially interesting features are visible. Most noticeable are

the large displacements of the N-terminal residues when the models are aligned

using the C-terminal main chain (Figure 5.7). This again indicates a significant

domain realignment, the exact nature of which is not yet clear. The dominant

feature in all three plots is a large displacement of the C-terminal end of helix C

(residues 70-80 or so).

Many smaller features are visible in both the C and N terminal domains. We

are especially interested in changes around the cavity of the L99A mutant, buried

in the C-terminal domain. Here we can see two, possibly three interesting if small
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Figure 5.7: Magnitude of Cα displacements in Å at 2 kbar. Here the molecules

have been aligned using only the main chain atoms of the C-terminal domain.

Bars and letters indicate positions of the ten α-helices. Uncertainties are discussed

in Section 5.3.5.

features, one around residues 130-140 (roughly helices H and I), which is conserved

in both WT* and L99A, and one centered around residue 107 (between helix E and

F) and visible primarily in L99A. A third feature between these two is smaller but

perhaps interesting. The C-terminus is also displaced, but this region is poorly

defined in the electron density maps, and so I do not put much stock in this

observation.

Features in the N-terminal domain become much more noisy when the models

are aligned on that domain. This may be a further indication that the changes in

the N-terminal domain are best thought of as relative to the C-terminal domain.
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Figure 5.8: Magnitude of Cα displacements in Å at 2 kbar. Here the molecules

have been aligned using only the main chain atoms of the N-terminal domain. Bars

and letters indicate positions of the ten α-helices. Uncertainties are discussed in

Section 5.3.5.

In contrast, displacements of the C-terminal domain and C-helix are quite robust.

In contrast to the B factors, the atomic displacements are essentially monotonic

with pressure. As is visible in Figure 5.9, much of the displacement visible at

2 kbar has occured at lower pressures, but displacements continue to increase with

applied pressure. Parts of the molecule which show no change above 1 kbar are also

locations where there is very little change at all. From this figure, we can identify

several soft regions. Again, the C-terminal end of helix C appears to be the softest

part of the protein, followed by parts of the N-terminal domain. Displacements

in the C-terminal domain decrease less as a function of pressure than those in the
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Figure 5.9: Magnitude of Cα displacements in Å for L99A at three pressures.

Alignment was based on the main chain atoms of the C-terminal domain. Bars

and letters indicate positions of the ten α-helices. Uncertainties are discussed in

Section 5.3.5.

N-terminal domain.

5.3.7 Domain realignment

The largest concerted displacement of the L99A or WT* molecules is that of the

N-terminal domain relative to the C-terminal domain. From Figure 5.7 we can see

that there are at least three parts to this displacement, a peak near residue 20,

another peak near residue 37, and smaller features from residue 43 to 60, where

the domain ends. In this case it turns out that the minimum displacements are

the most interesting.
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Figure 5.10: A cartoon view of N-terminal domain displacements in the L99A

mutant along the first principal axis of inertia. The N-terminal domain is shown

in dark blue at ambient pressure. The displacement at 2 kbar (orange) is shown

magnified 5 times. The remainder of the ambient pressure structure is shown in

light blue. The arrow labelled P indicates the direction of pressure-induced dis-

placement of the N-terminal domain. The WT* N-terminal domain has essentially

the same response to pressure. Inset shows relative orientation of the molecule.

Refer to Figure 5.3 for colors.
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Domain movement as a whole

Figure 5.10 shows that the N-terminal domain primarily translates relative to the

C-terminal domain by about 0.25 Å over 2 kbar. This motion is primarily along the

second principal axis of the inertia tensor (shown in the figure; the cosine between

these two vectors is 0.96), and is more or less perpendicular to the line between

the C- and N-terminal domain centers. The largest concerted displacement lays in

the B-helix, which is displaced about 0.3 Å on average at 2 kbar. The helix moves

as a unit, and does not appear to deform substantially.

Key points for the displacement of this domain are in the loop after helix

A, particularly Leu13 and Arg14, and residues 55-59, which are surprisingly rigid.

Probably there is little holding most of the domain in place, while helix A interacts

strongly with helix E (making two hydrogen bonds and a number of close inter-

atomic contacts) and residues 49-59 makes numerous contacts with the C-helix,

including two hydrogen bonds between Glu62 and Arg52. This end of the C helix

(see below) is coupled to the N-terminal domain displacements, and is probably

largely responsible for resisting those displacements as pressure increases.

A curious minimum

Near residue 30 in both WT* and L99A there is a strong minimum in displacement

(Figure 5.7. The most notable interaction near this feature is a hydrogen bond

between Asp70 and His30. There are no other obvious contacts pinning this region

together, although at higher pressure the side chain of Leu66 blocks the motion

of His30 in the direction in which the rest of the domain moves. Leu66 is also

implicated in the displacement structure of helix C.
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5.3.8 Changes in the C-helix

Figure 5.11 illustrates the rather complex changes in the C-helix. From the dis-

placement amplitudes seen above, we expect the two ends of the helix to behave

very differently, and in fact this is what I observe. Both ends of the helix displace

under pressure, but the displacements are different in amplitude and direction.

The C-terminal end residues moves as much as 0.5 Å towards the cavity (per-

pendicular to the axis of helix E). As seen in the figure, there is more displacement

between ambient pressure and 1 kbar than between 1 kbar and 2 kbar. The mo-

tion is largely a pivot about a point near residue 67. Residues 60-70 do not move

substantially perpendicular to helix E.

In another view (bottom panel of Figure 5.11, we can see that the N-terminal

end of helix C does move, but primarily along the axis of helix E. Again, this

appears to be a pivot about residue 67’s main chain atoms. The displacement is

less substantial, about 0.25 Å at the extreme N-terminal end.

There are number of interatomic contacts in the region of the C-helix kink.

Asp70 makes a hydrogen bond to sheet His31, but this bond appears to deform

under pressure. It appears that the kink may result from a complicated set of

atomic contacts between Phe4 and Ile7 on the A helix, Phe67 and Val71 on helix

C, Ile29 in the β-sheet, and Phe104 on the E helix. This will be considered further

in Chapter 7.

The fact that the C-terminal end of helix C is so free to move is intriguing. We

might expect this to be due to the truncation of residue Leu99 to Ala99, since a

number of atoms on or near this end of the helix line the cavity (Cγ1, Cγ2, Cδ1 of

Ile78, and Cα, Cβ, Cδ1, Cδ2 and the main chain oxygen of Val84.) However, from
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Figure 5.7 and Figure 5.12 on page 145, it is quite clear that the large changes in

the C helix are conserved in both the L99A and WT* mutants. In fact, it appears

that two hydrogen bonds (between Glu108 and Asn81 and between Leu84 and

Asn81) stabilize a somewhat open atomic configuration at ambient pressure. As

pressure increases, these bonds deform, and the C-terminal end of helix C collapses

inward, regardless of the presence of an enlarged cavity.

5.3.9 Changes in the C-terminal domain

From Figure 5.7 it was clear that there were a number of interesting changes in

the C-terminal domain. These lie in the D helix (the shoulder of the large peak

that included the C helix), a peak centered on residue 108 in helix F, a smaller

feature in helix G centered on residue 120, and another significant feature centered

around residue 133.

Helix E is most remarkable as it changes almost not at all. Of all the residues

in the molecule, it is those immediately surrounding residue 99 on the E helix that

displace the least, a fact that can been seen in each of the figures in Section 5.3.6.

Helix D

In Figure 5.13 we can see that helix D, particularly residues 82-85, move in towards

the cavity by as much as 0.25 Å. As noted before, this appears to be due not to

the cavity, but rather to the loosely packed quality of this region of the protein.

The motion is conserved in the WT* molecule.
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Figure 5.11: Two views of the C-helix axis in T4 mutant L99A. A cartoon of the

remainder of the molecule is shown for visual orientation. Displacements magnified

by 5. Colors: (cyan) ambient pressure, (yellow) 1 kbar, (magenta) 2 kbar. (Top)

A view along the axis of the E helix (shown center), with the B helix in the

upper right background. (Bottom) A view perpendicular to the E helix, rotated

≈ 90 degrees relative to the upper panel as shown. Letters indicate helix names.

Arrows labelled P indicate the direction of pressure-induced displacements. Insets:

orientation cartoons for each panel, showing helix B in light blue, helix C in green,

and helix E in yellow.
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Figure 5.12: Deformation of the C-terminal end of Helix C in T4 WT*. Displace-

ments magnified by 5. The view and colors are the same as the top panel of Figure

5.11.

Helices F and J

Helix F is shown at the top of Figure 5.14. A slight rotation is visible in the figure,

in which one end (N-terminal) moves opposite to the other end. The displacements

are small, on the order of 0.1 to 0.15 Å over 2 kbar. The helix rotates about 2

degrees, and this motion seems to be coupled to a very slight movement of helix G

along its own axis and towards its C-terminal end. While the WT* molecule shares

this displacement of helix G, the displacements in helix F are much less convincing,

and look more like noise than anything real. It is somewhat difficult to attribute

these differences to the enlarged cavity of L99A: residues along helices F and G
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Figure 5.13: A view of the C-terminal domain, looking through helix G into the

cavity, showing a Cα trace for L99A at ambient pressure, 1 and 2 kbar, and the

helical axes. Colors are the same as the top panel of Figure 5.11. Displacements

magnified by 5. In the orientation inset, helix D is yellow-green and helix E (yellow)

is just visible behind helix G (orange).
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F

EDG

Figure 5.14: A view of the C-terminal domain looking through helix D into the

cavity. Legend is as for Figure 5.14. Displacements magnified by 5. In the orien-

tation inset, helix C is green, helix D is yellow-green, helix E is yellow, and helices

F and G are orange.
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border the cavity of the WT* molecule as well. At first glance it appears that

the side chain of Val111 or Phe114 might contact Leu99 in the WT* protein, but

again this turns out to be false. This particular set of displacements will remain a

mystery for the moment.

Helix H

Helix H is visible at the extreme left of Figure 5.13. As is evident, the N-terminal

end displaces very little, while the C-terminal end displaces by as much as 0.28Å

into the cavity. (Again, the residues which move the most, Leu133 and Ala134,

line both the L99A and WT* cavities, and equal displacements are seen in both

cases.) It is interesting to note that Phe114 makes contact with Leu133, and that

their displacements seem to be concerted. This still does not resolve the different

changes in helix F between WT* and L99A, since Leu133 does not contact Leu99

in the WT* protein.

Helices I and J

Helix I is so short that deformation is hard to define, but one end (Trp138) moves

about 0.15 Å towards the WT* cavity center. This, and a similar motion of Ala146

are related to the motion of Leu133 by a string of atomic contacts. Helix J (which

includes Ala146) primarily translates about 0.1 Å towards the cavity.

5.4 Remarks

It is remarkable that the introduction of a large cavity in the core of the C-terminal

domain does not result in large structural changes at ambient pressure. It is yet

more remarkable that the cavity mutant and the psuedo wild type protein respond
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in the same way to high pressures. While there are small differences between the

two mutants, I find it difficult to connect those differences to the L99A mutation.

The connection may be through collective motions of side chains lining the cavity

which are only detectable in certain places. Whatever the underlying interactions

governing the pressure response of these molecules, it appears that the core of

the molecule is not particularly important. It remains to be seen what is most

important.

A remarkable set of interactions exists in the region of the C helix kink. Strong

interactions and contacts pin helix A to helix E. Two residues on helix A constrain

the motion of helix C near the kink, and many contacts, including three hydrogen

bonds, connect the kink region to the N-terminal domain at points of minimum

displacement. It seems fair to say that this region forms the structural core of the

molecule.

Another notable feature is that the pressure induced displacements are larger

between ambient pressure and 1 kbar than between 1 and 2 kbar. This could be an

indication that the molecule is finally packing densely. Or it might be an indication

of some other relaxation mode occuring. As we’ll see in the next chapter, water

does enter the cavity at the highest pressures in this experiment. What connection

can be made between that water and the structural relaxation of the protein must

wait until we have explored where and how much water is present.



Chapter 6

Observation and simulation of water in

cavities at high pressure

In the previous chapter I examined only the features of the atomic models of the

WT* and L99A T4 Lysozymes refined from high-pressure x-ray diffraction data.

I did not consider whether the models were themselves complete. In particular,

does anything fill the cavity as pressure is increased? This chapter describes the

methods used to address this question, and presents the evidence suggesting that

water fills the L99A cavity in a cooperative fashion as pressure is increased.

6.1 Construction of experimental electron density maps

6.1.1 Review

Electron density is the most fundamental quantity we can derive from x-ray diffrac-

tion. In this chapter we will rely almost exclusively on electron density maps to

understand changes in the cavity as pressure increases. It is useful to review a few

key concepts before mentioning some of the practical challenges and extensions

that have been used here.

X-rays scatter overwhelmingly from the electron density in a system. In crys-

tallography we seek to associate this electron density with an atomic model, but

our model is often incomplete. To check this, we compare electron densities from

experimental data and models. From a perfect knowledge of the scattered ampli-

tude and phase for all scattering vectors q, we calculate an electron density by

150
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computing the Fourier transform of the scattering factors:

ρ(r) =

∫

d3q F (q)eiα(q)e−q·r. (6.1)

In a crystal, Equation 6.1 becomes a sum over reciprocal lattice vectors. Our ex-

periment does not measure the phase of each Bragg reflection, so we must construct

a set of phases (generally from an atomic model) and obtain

ρ(r) =
∑

hkl

Fhkle
iαc,hkle−q

hkl
·r, (6.2)

where the sum is over the Miller indices h, k, l. Using this equation, we calculate

electron density from our data plus a model of phases or completely from an atomic

model. We have one final problem, namely that we are missing the most important

reflection, h, k, l = 0, 0, 0: we blocked this unscattered beam to protect the x-ray

detector. The h, k, l = 0, 0, 0 reflection gives the total number of electrons in the

system, and therefore an absolute scale for all other reflections. In the model

refinement stage the data may be scaled to the calculated model structure factor

amplitudes Fc,hkl, using methods similar to those for scaling diffraction images

to each other. The calculated and (scaled) observed structures factors are then

used to make electron density “difference maps”, which are compared to note any

changes needed in the model.

6.1.2 Observed difference electron density maps

Here we seek to observe pressure-dependent changes in proteins, in the least model-

dependent fashion possible. The least model dependent object we can construct is

the observed difference electron density

ρ(p2, r) − ρ(p1, r) =
∑

h

(Fh(p2) − Fh(p1))e
iαc,he−q

h
·r, (6.3)
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where h now stands for the Miller indices {hkl}, and the pi are the pressures of

the datasets being compared.

Several problems remain. To determine absolute electron densities we must

scale the data as before, but now it is not clear to what they should be scaled.

We may choose either the high or low pressure calculated structure factors. This

choice is not particularly satisfying, as it forces some model dependence on us,

but the calculated phases already include such dependence. In any case we have

no other choice unless we are able to accurately measure the intensity of the for-

ward scattered amplitude F000. We must also choose a set of phases (high or low

pressure); the choice is similarly arbitrary. We are encouraged by the fact that

the small changes in the molecule catalogued in Chapter 5 should result only in

small changes in the phases and amplitudes, especially at lower resolutions. Since

all comparisons are made to the ambient pressure data, we will use the ambient

pressure model phases for consistency.

Finally, the maps must be multiplied by a factor of two to compensate for

uncertainties in the phases[143].

If the model structures and unit cells are not identical, another problem arises.

To compare two sets of structure factor amplitudes F (p1), F (p2), the atomic models

must (technically) be identical. Otherwise the phases are not identical, and the

map will contain artifacts. In our case, the molecules themselves change so little

that Equation 6.3 is a very good approximation as long as the unit cell also does

not change. But the unit cell does change substantially (by up to 1 Å in the c-axis).

While the amplitudes we measure have the same indices, they do not sample the

same positions in reciprocal space.

Recall that the scattering of x-rays from a crystal can be thought of in two
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parts, the scattering amplitude of the molecule itself, and a modulation due to the

crystal lattice. The crystal is a convolution of the molecule and a lattice, and the

Fourier transform of a convolution F(A◦B) (where (A◦B) denotes the convolution

of functions A and B) is the product of Fourier transforms F(A)×F(B). Thus we

may think of the crystal lattice sampling the intrinsic scattering of the molecule

at precise positions in reciprocal space. If the unit cells of two crystals differ, then

the sampling will be different as well.

We here make a somewhat arbitrary truncation at four times the maximum

difference in unit cell parameters, δ. Here 4δ = 4 Å. This “rule of 4” is not

particularly sophisticated. Imagine a 1 Å change in the length of a lattice vector,

in a unit cell approximately 100 Å across. Direct comparison of the reflections at

d = 2 Å will put an atom properly at a crest of the electron density at a trough.

On the other hand, for reflections of 4Å or lower resolution, points on the crest are

shifted at most 1/4 wavelength.

One might argue that we do not need to use the same set of phases, and that

we do not need to reference the reflections to the same unit cell. In the former

case, we have simply chosen to reduce model dependence as much as possible. The

latter is an option not currently available in the crystallography software used for

this work.

6.1.3 Integrating electron density in the cavity

After scaling the high and ambient pressure data sets to a common absolute level,

and constructing the difference map, we wish to determine the total number of

electrons in the cavity. The key problem here is in determining whether a given

point in the map is in the cavity or not.
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This determination and integration were performed using VOIDOO[139] and

MAPMAN[135], from the Uppsala Software Factory (http://xray.bme.uu.se/usf).

VOIDOO, described previously, outputs an electron density “mask” in the form of

a standard map whose values are either one if the point is in the cavity and zero

otherwise. Using MAPMAN, a package of electron density map utilities, this map

may be multiplied with the difference map described above, and the values in the

map summed. Since the values near the edge of the cavity are at the noise level of

the map (that is, at one standard deviation), this method should be as accurate

as is reasonably achievable.

It is important to note that for consistency I have chosen to use a 4 Å cutoff

resolution in the construction of all of the maps. If the 2 kbar-ambient difference

maps are to be accurately compared to the 1 kbar-ambient maps, they should use

the same resolution. In principle this can affect the final number of electrons

calculated to be in the cavity; tests on the 1 kbar data show that the effect is on

the order of ±1 electron.

6.1.4 Including water in the atomic model

We might attempt to determine the number and distribution of water molecules

in the cavity from the standard electron density difference maps between model

calculated and observed structure factors. Such determinations are problematic.

Among the most incipient problems is that the distribution need not be limited

to only one configuration or number of water molecules. As we shall see, simu-

lation suggests that the water samples a quite broad range of configurations and

occupanies. At present, we have no experimental data which indicates a favored

cavity occupancy number or configuration. Thus a proper crystallographic refine-
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ment model would include a large number of configurations somehow weighted.

Techniques exist for such modelling, but we are again limited by the number of

available data, namely the observed Bragg reflections.

Future experimental work must address this issue, but for now I have used

arp waters as discussed in Section 4.4.1 to locate water molecules. The use of

this program to locate cavity water molecules is somewhat secondary to its use in

improving the solvent model around the protein. As we will see, it does a poor job

of modelling the cavity water.

6.1.5 Water or something else?

If we observe electron density in the cavity, we should not immediately assume

that it is due to water. Our conclusion that the observed increase in electron den-

sity is due to water will be supported by Gerhard Hummer’s molecular dynamics

simulations. Other experimental clues help us to arrive at this conclusion.

The principal chemicals in solution are potassium and sodium phosphates, and

the additive β-mercaptoethanol (BME), which includes sulfur and oxygen atoms.

Water has ten electrons per molecule, fewer than potassium ions (18), but the same

as sodium ions (10). Despite our eventual conclusion that the protein core must

make strong electrostatic interactions with buried water, we still assume that bare

charges (each ion is +1) are substantially disfavored in a low-polarity environment.

Phosphate ions have 44 electrons, making them more visible in electron density

than water. Also, their charge of -3 should make them highly unfavorable in the

cavity. The BME molecule has 36 electrons, but similar electron density to water.

It has a molecular surface volume of ∼ 78 Å3, and a solvent accessible volume

of ∼ 257 Å3. Compounds similar to BME do not bind in the cavity at ambient
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pressure[50]. Ethanols have a dipole moment of approximately 1.7D, compared to

1.9D for water. Due to its size, BME will not be able to enter the cavity in groups

which can hydrogen bond with each other, and presumably it would lose some

conformational entropy upon entering the cavity. Even if BME interactions are

very similar to those of water, its concentration is about a thousand times smaller

than water (50 millimolar versus 55 molar), so that almost everything filling the

cavity should be water.

This analysis suggests that the most likely candidate for cavity filling is water,

but it cannot rule out other possibilities. Complete filling of the cavity at higher

pressures would help remove any uncertainty. Even with the data we have, the

MD simulations will help us feel more certain that the cavity is filled with water,

not some other substance.

6.2 Molecular dynamics simulation

Instead of trying to empirically determine the cavity water distribution, we can

momentarily sidestep the data and simulate the cavity to predict the water distri-

bution. Comparisons can then be made with the observed occupancies (integrated

electron density) and shape of the electron density distribution. If these compar-

isons are favorable, then we can use the simulation to interpret the experimental

results. I have relied on Gerhard Hummer of the National Institutes of Health to

implement this part of the study, but to understand the results it is important to

describe the principles of protein simulation by molecular dynamics.
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6.2.1 Principles of molecular dynamics

The basic principle of molecular dynamics simulation is easy: apply Newton’s

second law to all atoms in a system. Of course there are many caveats, since we

cannot analytically solve the resulting equations for anything more complex than

two-body interactions, much less the underlying quantum mechanical interactions.

We are left to solve the problem numerically. For the moment, we will assume that

we have solved the (much more difficult) problem of determining the forces on any

atom (or equivalently their energies). The details of this will be considered briefly

in the next section.

The simulations described in this chapter use the AMBER 6.0 molecular dy-

namics package[144, 145]. It uses a so-called “leap-frog” variation on the Verlet

algorithm[146]. All such algorithms are based on simple Taylor series expansions

of the atomic positions ri:

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2mi

f i(t)∆t
2 +

1

6

...
ri + O(∆t4). (6.4)

v(t) and f(t)/m are the first derivative (velocity) and second derivative (force

divided by the mass of the relevant atom) of ri with respect to time. These can

be approximated numerically at each point in the simulation.

Equation 6.4 could be used on its own, but it turns out that this formulation

is not in fact time reversible, and therefore does not conserve energy. Summing

Equation 6.4 with the equivalent expansion of ri(t−∆t), and rearranging we obtain

the Verlet algorithm

ri(t+ ∆t) ≈ 2ri(t) − ri(t− ∆t) +
f i(t)

mi
∆t2, (6.5)

which is accurate to O(∆t4) and is less susceptible to long time scale energy

drift[146]. Dropping subscripts, velocities can be calculated at each time step
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as

v(t) =
r(t+ ∆t) − r(t− ∆t)

2∆t
. (6.6)

AMBER 6.0 uses the leap-frog algorithm, a slight variation on the Verlet scheme.

Velocities are now calculated at half-integer time steps:

v(t+ ∆t/2) =
r(t+ ∆t) − r(t)

∆t
, (6.7)

and similarly for v(t− ∆t/2). Then the positions are updated as

r(t+ ∆t) ≈ r(t) + v(t+ ∆t/2)∆t. (6.8)

This yields identical trajectories to the Verlet scheme Equation 6.5, but the veloc-

ities are not calculated at the same time points.

6.2.2 The AMBER force field

The simulations presented in this chapter use the ff94 or parm94 force field of the

AMBER package[144, 147, 148] available from the University of California, San

Francisco or from the Scripps Research Institute (URL: http://amber.scripps.edu).

The form of the force field is[148]

V =
∑

bonds

Kl(l − leq)
2 +

∑

angles

Kθ(θ − θeq)
2

∑

dihedrals

Kn

2
[1 + cos(nφd − γ)] +

∑

i<j

[

Aij

r12
ij

− Bij

r6
ij

+
qiqj
εrij

]

. (6.9)

The first term is a sum over bonds, restricting bond lengths to leq with a force

constant Kl which varies with bonding type. The sum over angles similarly re-

strains bond angles to equilibrium values θeq. The equilbrium values are derived

as for the stereochemical restraints used in macromolecular structure refinement
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(see Chapter 4), and force constants are derived from vibrational frequency data

on small molecules. The dihedral, or torsion, angle term limits rotations φd about

bonds and is a Fourier sum where each component n has a corresponding strength

Kn and the preferred angles can be offset from zero by γ. For instance, C-C bonds

generally include only a 3-fold term (that is, n = 3), but may include a 2-fold term

if there is some reason to favor one rotamer over another, or in the event of sp2

bonding (as in aromatic rings).

The electrostatic term is a combination of a Coulomb term (with dielectric

constant ε) and a Lennard-Jones term. Each atom has a fixed partial charge qi

at its atomic center, derived from least-squares fits to electrostatic potentials from

quantum mechanical Hartree-Fock wavefunction calculations using a 6-31G* basis

set[147, 148]. These charges sum to zero so that the sum of electrostatic potentials

will converge. Some form of Ewald summation must be used to handle the long

ranged Coulomb interactions, since we will only simulate a finite volume. Handling

these interactions is non-trivial and great care must be used, but the topic is beyond

the scope of this work. We use the particle mesh method[146]. The Van der Waals

parameters A and B for carbon atoms are determined by simulating appropriate

liquids (e. g. C3H8 or C4H10 for aliphatic carbons or benzene for aromatic carbons).

Many other parameters were determined from the OPLS (Optimized Parameters

for Liquid Simulation) model[148, 149].

Notably there is no explicit hydrogen bonding term. Instead this is accounted

for in the electrostatics of particular typical hydrogen bonding groups, by vary-

ing the Lennard-Jones parameters of hydrogens depending on their bonding and

second-bonding partners. For instance, the Lennard-Jones radius for hydrogen in

O-C-H will be smaller than that in C-C-H.
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The philosophy behind the parm94 parameterization is to over-charge (and

over-polarize) atoms in order to compensate for the lack of polarizability in the

model. This is also done to match the water model used in the simulations (typi-

cally something like the TIP3P model[148, 150], which also lacks polarizability and

is over-charged). This can lead to some problems. Among other things, in this

charging scheme, buried partial charges tend to be underdetermined, and confor-

mational effects are neglected[147]. Some effort has been made to compensate for

this by averaging over many conformations[147, 148], but errors may still result.

Fortunately, many properties of proteins are fairly insensitive to the exact de-

tails of the fixed atomic charge distribution, at least if the simulation is begun

from a known native state(e. g. [151]). On the other hand, ligand binding or

other behavior dependent on long ranged interactions may be sensitive to such

parameters[147]. It remains to be seen how much of an effect this would have on

the simulations of water in the hydrophobic cavity of T4 mutant L99A. Given that

polarizability probably plays an important role in water-nonpolar residue inter-

actions, this is an avenue for future simulation work. As of 2003 at least, most

simulations of proteins did not include explicit electronic polarizabilities. As with

all theoretical approximations, experiment is the final arbiter of success, and we

will see below that the simulations do reasonably well. Whether this is simply luck

must remain a question for another day.

6.2.3 Thermodynamics and implementation

For thermodynamic studies, we use time averaged simulation data to determine

the free energy of various water-filled cavity states. An excellent survey of this sort

of grand-canonical averaging in molecular dynamics (MD) can be found in Daan
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Frankel and Berend Smit’s book Understanding Molecular Simulation[146]. The

structure (pdb code 1L90) is simulated with 4964 TIP3P water molecules[150], 18

sodium ions and 27 chloride ions. The experimental structure is not at an energy

minimum in the MD force field, so a brief energy minimization is necessary. The

“production” simulations are then performed at constant temperature (300K) and

pressure (1 bar, 1 kbar, or 2 kbar) and with a 1 fs time step. We use particle mesh

Ewald summation and periodic boundary conditions to handle long ranged charge

interactions.

After 54 ps of simulation with the cavity held empty, water molecules are in-

dividually removed from bulk and placed into the cavity to simulate states of

occupancy N = 0, 1, 2, 3, 4, 5. These configurations are further equilibrated for 50

to 300 ps, after which the system is simulated for 1 to 1.7 ns and structures are

saved for analysis every 0.5 ps. In each of the 18 simulations, the resulting struc-

ture is averaged over the final 0.25 ns for comparison to the original structure. The

α-carbon RMSD is less than 0.7 Å for the whole molecule, and by less than 0.55 Å

for the N and C terminal domains separately.

The simulations themselves only allow us to determine the internal interaction

energies of each system at one occupany number N and pressure p. The relative

free energies of each state are determined by a grand canonical partition func-

tion for the water molecules in the cavity using histogram matching[72, 73, 146].

We occasionally insert or remove a water molecule from the cavity to determine

the internal energy change, and use this to derive the free energy differences by

averaging over the simulation time. Below is a summary of the method.
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The grand partition function for water in the cavity is (e. g. [73])

Ξ =
∞

∑

N=0

zN

N !

∫

dNre−βUN . (6.10)

The UN are the interaction energies of N water molecules in the cavity with each

other and their (protein) environment. In equilibrium with bulk water the ac-

tivity1 can be written as2 z = ρbulk exp(βµex
bulk)[152, 153], where µex

bulk is the bulk

excess chemical potential. From the test-particle insertion method[146], the excess

chemical potential of water in the cavity is given by the canonical average over the

energy of inserting an additional water molecule.

exp(−βµex
N ) =< e−β(UN+1−UN ) >N . (6.11)

The probabilities of occupancy P (N) are the terms of the sum in Equation 6.10.

Then the ratios of those probabilities can be written as

P (N + 1)

P (N)
=
ρbulkV

N + 1
exp(βµex

bulk − βµex
N ). (6.12)

1z = exp(µ/kBT )/Λ3 with chemical potential µ = (∂G/∂N)|T,p where N is
the number of particles in the system, here water molecules in the cavity, and
Λ = (}2/2πmkBT )1/2 is the de Broglie wavelength of a particle of mass m.

2To derive this, note that the chemical potential can be written in terms of the
Helmholtz energy as µ ≈ A(N +1, V, T )−A(N, V, T ) = −kBT ln(QN+1/QN). The
canonical partition function QN+1 is

QN+1 =
1

(N + 1)!Λ3N

∫

V

exp(−βWN+1)d
3x1 · · · d3xN+1

=
1

(N + 1)!Λ3N

∫

V

exp(−βWN ) exp(−βφ)d3x1 · · · d3xN+1

=
V

(N + 1)Λ3
QN < exp(−βφ) > .

Since N/V = ρbulk, then using the definition of µ above and the definition of z in
Footnote 1 above, z = ρbulk exp(βµex

bulk), where the excess chemical potential arises
from the canonical average of the Boltzmann factor for a test particle inserted into
a system of N particles, < exp(−βφ) >. This is the essence of the Widom test
particle insertion method[146]
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where V is the volume into which the water is inserted.

To determine the canonical average in Equation 6.11, we collect the histogram

of ∆U = UN+1 − UN from insertions of a water molecule into a cavity with N

water molecules already present, pins(∆U), and removals of a water molecule from

a cavity with N +1 water molecules, prem(∆U). The ratio of the two distributions

is[146]

pins

prem
=
qrem

qins
exp−β∆U , (6.13)

where qrem/qins is the ratio of the canonical partition functions of the N + 1 and

N states, and therefore the average we seek in Equation 6.11. The probabilites

P (N) can then be calculated and normalized straightforwardly.

6.3 Observed water in the cavity

Figure 6.1 shows the electron density inside the L99A T4 lysozyme cavity at 2 kbar.

It also shows the positions of water molecules in the atomic model, determined au-

tomatically by the refinement software. The electron densities are each contoured

at the same absolute level, 0.1 e/Å3. (The average electron density of one water

molecule is roughly 0.3 to 0.5 e/Å3.) Integrated densities are listed in table 6.1 on

the next page.

6.3.1 Electron Density Maps

The noise in the maps can be disconcerting. In Figure 6.1, noise is visible in each

density map, and appears to be strongest in the 2 kbar-ambient map. However, the

noise in the averaged maps is small compared to the density in the cavity. While

there may be significant noise in the individual difference maps, that noise averages
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Table 6.1: Integrated electron densities from observed electron density difference

maps (Section 6.1.2. Comparison is by data set, units are electrons. Numbers in

bold represent the average over all comparisons between high and ambient pressure.

Datasets are as listed in 3.1 on page 71.

Dataset mt0k1 mt0ka mt0kb average

mt1k6 10.7 7.0 4.5 7.4

mt1k7 9.0 5.8 2.1 5.6

mt1k9 5.9 4.1 0 3.3

1k average 8.5 5.6 2.2 5.4

mt1.5k1 17.4 14.6 11.4 14.5

mt2k1 20.7 17.6 15.8 18.0

mt2k3 22.6 20.6 18.5 20.6

mt2k8 24.4 22.2 20.2 22.3

2k average 22.6 20.1 18.1 20.3

out almost everywhere but the cavity. This again demonstrates the importance of

collecting multiple datasets in high pressure crystallography experiments.

Contoured at the same absolute level, the 2 kbar - 1 bar maps indicate the same

water distribution and magnitude. Similarly, the 1 kbar - 1 bar maps all show the

same features. However, the noise in the maps can be quite different. The mt2k8-

mt0k1 map has a considerably larger noise level than the mt2k3-mt0k1 map (0.08

compared to 0.05 e/Å3). For this reason, I have chosen to average the maps. The

noise level decreases, but the principal features remain the same.

Besides the clear presence of strong electron density at 2 kbar, a couple of points

are worth note. The shape of the electron density indicates three or more distinct
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Figure 6.1: Electron density in the cavity of T4 lysozyme mutant L99A. To con-

struct this map, the individual difference maps at any one pressure were averaged

in real space. The cavity wall is shown with colors corresponding to the atoms

lining the cavity: Carbon, grey; nitrogen, blue; oxygen, red; sulfur, orange. Ab-

solute electron densities at 1 kbar (blue), 1.5 kbar (purple) and 2 kbar (yellow) are

contoured at 0.1 e/Å3. Uncertainties are discussed in Section 6.5.1. Small red

spheres are oxygen atoms from model water molecules, identified or verified by the

program arp waters described in Sections 4.4.1 and 6.1.4. Three water molecules

from the (x-ray derived) atomic model are visible in the cavity. Schematically

they represent the water distribution acceptably, but they model the occupancy

and electron density poorly. The view is from the F helix into the cavity.
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sites for the water molecules. The 1.5 kbar-1 bar density has the same shape as

the density at 2 kbar, and is only reduced in amplitude. This contrasts the case at

1 kbar, where only one peak is clearly visible. An attempt to contour the 1 kbar

map at a lower level obscures the cavity water distribution with noise, so it is not

clear whether this small peak is part of a broader but weak distribution, or is in

fact an isolated peak indicating a more favored 1-water molecule binding site.

While no data are available between ambient pressure and 1 kbar, it is clear that

there is a marked change in behavior around this pressure. The electron density

in the cavity increases twice as much between 1 and 2 kbar as it does between 0

and 1 kbar. Each water molecule corresponds to 10 electrons, so while at ambient

pressure there is no visible electron density, at 1 kbar we see a total of 0.5 water

molecules on average, at 1.5 kbar about 1.5 water molecules, and roughly 2.0 water

molecules at 2 kbar.

Examining Table 6.1, it is not entirely clear what will happen at higher pres-

sures. It may be that the occupancy will increase very little or that it is still only

at the midpoint of filling the cavity. In either case, a plot of the average cavity

occupancy does seem to indicate that the cavity occupancy will continue to grow

somewhat as pressure is further increased.

6.3.2 Atomic model

The atomic model shown in Figure 6.1 shows three water molecules (as small red

spheres) distributed evenly across the cavity at 2 kbar. Unfortunately it is not

clear that this is accurate. The total cavity water occupancy at 2 kbar is slightly

more than 2 water molecules. Two water molecules alone cannot be responsible

for the observed distribution without large temperature factors. Even three water
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molecules require large temperature factors. The B-factors for the refined water

oxygens range from 40 to 70 Å2, with a mean of about 54 Å2. Moreover, the number

of water molecules found by the refinement software is highly sensitive to various

refinement parameters. For these reasons, and those mentioned above, I have little

faith in these atomic models.

With those caveats, it is still interesting to note that the central water molecule

in Figure 6.1 is conserved across all of the 2 kbar models, and always found within

0.1 Å of the central electron density peak observed at 1 kbar. This position may be

more energetically favorable than any other. To better quantify the distribution

of water in the cavity, we now turn to computer simulation.

6.4 Molecular Dynamics results

The simulations performed by Gerhard Hummer yield essentially the same result

as our experiment, namely that the cavity collapses little as pressure increases and

that around 1.5 kbar the cavity begins to fill with water. The occupancies derived

from simulation are compared to the experiment (assuming 1 water molecule =

10 electrons and no water in the cavity at ambient pressure) in Figure 6.2, along

with a perturbation theory extension to higher pressures. With a shift in the

absolute chemical potential of water by 0.4 kBT (determined by a visual fit to the

experimental data), the simulation matches the data fairly well. It is important to

note that this shift is an absolute shift in the chemical potential of water, and should

not be compared to the change in chemical potential as a function of pressure.

In Figure 6.3 we see that all of the occupancy probabilities P(N) increase.

P (N = 5) changes most, by more than a factor of 100. However, it is so strongly
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disfavored at 1 bar that it still contributes little at 2 kbar. At pressures greater

than 1 kbar, the N = 4 state dominates the average cavity occupancy < N >=

∑

NP (N). This effect only becomes stronger as pressure is increased to 2 kbar.

There are a couple of immediate lessons from Figures 6.2 and 6.3. One lesson

is that the process is apparently cooperative, so that clusters of water molecules

are favored over individual water molecules in the cavity. This is reflected in the

steepness of the filling curve at the filling midpoint, which is unfortunately poorly

constrained by the current experimental data. This cooperativity implies interac-

tions between the water molecules in the cavity (presumably hydrogen bonding).

The x-ray data seem to agree. More, and higher-pressure data, are clearly needed

to establish this observation conclusively.

Assuming that the cooperativity is real, it appears that water molecules need

to each make about 1 hydrogen bond per water molecule to be stable in the cavity.

Three water molecules can make at most an average of 2/3 of a hydrogen bond per

water molecule. Four water molecules can make between 3/4 and one hydrogen

bond per water molecule, depending on the configuration. Both linearly arranged

“wire” states and cyclic “square” states are observed in the simulation, in roughly

equal populations, notably similar to gas phase water[72, 154]. In contrast, water

in the liquid makes nearly 4 hydrogen bonds in a nearly tetrahedral configuration at

any given time (most recently discussed in reference [155] and references therein),

so that there are on average almost 2 hydrogen bonds per water molecule in the

liquid. Cooperativity alone is insufficient to stabilize water in the cavity; there

must be significant interactions between the water and the protein, on the order

of one hydrogen bond, which is about 13 kJ/mol (about 5 kBT ) for a water dimer,

and increases with the cooperativity of hydrogen bonding[154].
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We might also guess from the simulation that entropy is playing a role in the

transition. Five water molecules should fit in the cavity (the average volume of

water in the liquid is about 30 Å2, and the cavity volume is roughly 160-180 Å2

depending on how its measured). However, five water molecules are clearly strongly

disfavored, as seen in Figure 6.3. One water molecule is seen to escape the cavity

in the N=5 simulations as well. It seems that more configurational space, and thus

entropy, is required for the cavity to be filled. Experiments and simulations using

temperature as a variable would confirm this hypothesis and make it quantitative.

For the moment it is mostly speculative.

Analysis of simulation results yields somewhat more quantitative determination

of the interaction energies. The average potential energy of water in the cavity

changes very little with pressure, as we’d expect given the small changes in the

structure observed by x-ray crystallography. Instead the water filling of the cavity

is due to changes in the bulk activity of water. The average interaction energy

of each water molecule in the cavity decreases as the number of water molecules

is increased, from -23 kJ/mol for N = 1 to -60 kJ/mol for the N = 4 state.

Roughly half of this interaction is due to hydrogen bonding, while Van der Waals

and charged or dipole interactions with the surrounding protein account for the

remainder.

Unfortunately, it remains difficult to separate out more specifically the contri-

butions to the interaction energies. This is the most time consuming part of the

simulations, and is also the most susceptible to error. Due to the way in which the

potential is parameterized (see Section 6.2.2), only the total energies are well char-

acterized, and polarization responses cannot easily be separated from interactions

between permanent dipoles. Considerably more effort would be required to obtain
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more detailed breakdown of the interaction energies. Still, we have learned a great

deal, and the simulation has suggested some important experiments to follow those

described in this thesis.

Figure 6.2: Water occupancies determined from molecular dynamics simulation.

Filled circles are the experimental data, unfilled squares are determined by sim-

ulation. Experimental uncertainties are estimated at . 0.5 water molecules (see

Section 6.5.1). The solid line is a perturbative extrapolation from the simulation,

The dashed line is the same curve shifted 53MPa, determined by a visual fit to

the experimental data.

One of the more surprising findings from simulation was the escape of water

molecules from the cavity. In one instance in an N = 1 simulation, and a separate

instance in an N = 5 simulation, one water molecule escaped the cavity. First, the

Phe114 side chain rotated, providing a clear path from the cavity to the outside

bulk solvent between the side chains of Phe114, Ser117, Asn132 and Leu133. The

water molecule migrates through this opening to a site observed to have bound

water in the original L99A structure (pdb code 1L90, WAT196). Such a pathway

corroborates earlier NMR data[35] which suggested that there might be a pathway
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Figure 6.3: Occupancy probabilites by occupancy number N. Note that most fa-

vorable state at high pressure is 4 water molecules.

involving the F and G helices.

6.5 Other cavities

6.5.1 WT* Lysozyme

The situation is quite different in the WT* T4 lysozyme, whose main cavity is

adjacent to the Leu99 side chain (and which is part of the large cavity in the L99A

mutant.) In principle one water molecule could fit in this cavity, but I observe no

such change at any pressure. Constructing difference maps for the wild type data

as I did for the mutant, and integrating the electron density as before, I find a total

cavity occupancy on the order of 1-2 electrons, a number which upon inspection of

the density maps is clearly at the noise level. Moreover, this number appears to be

independent of pressure. No oxygen or nitrogen atoms line the wild type cavity,

making it unlikely that hydrogen bonding could take place.
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The WT* protein thus gives us a nice measure of our uncertainty. The WT*

cavity has a volume approximately 5 times smaller than the L99A cavity[47]. If

this is random noise, the noise level in the integrated electron density of the L99A

cavity should be 1.5×
√

5 ≈ 3.5 electrons, less than one half of one water molecule.

If instead this is taken to be systematic background, then the error would be on

the order of one half of one water molecule. Given that the noise cancels well in

the observed difference maps, I am inclined to believe that the errors are random

and not systematic.

6.5.2 Other cavities in L99A Lysozyme

There are other cavities in this molecule, including a small cavity near the Cβ

atom of Phe153, and another cavity between the N-terminal end of helix C and

the β-sheet. This latter cavity is hydrated in the ambient pressure WT* and

L99A mutant structures, and there is no observable increase in electron density

associated with these two water molecules. The former shows no increased electron

density in the 2 kbar-ambient difference electron density maps for either the wild

type or L99A mutant data.

6.6 Remarks

At pressures above 1 kbar, appreciable water can be detected in the main cavity

near the L99A mutation of T4 Lysozyme. The experimental data are ambiguous

as to the exact distribution of this water, but most likely indicate 3 or more

water molecules having P (N) substantially less than one. The molecular dynamics

simulations indicate that the N = 4 state dominates, especially at higher pressures.
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Most importantly the experiment and the simulation agree that the interactions

of the water with the cavity change almost not at all as pressure increases. The

experiment indicates this because the structure changes so little. The simulation

is able to measure these interactions directly, showing that exp(−βµex
N ) defined in

Equation 6.11 changes very little as a function of pressure. Thus we have isolated

the interactions of the protein, and can study those interactions by changing the

chemical potential of the surrounding water. This chemical potential can be de-

termined by integrating the equation of state of water as a function of pressure:

∆µwat =
∫ p1

p0
dp/ρbulk. At 300K and from 1bar to 2 kbar, ∆µwat = 1.4kBT based

on experimental data[156] and simulation. This change is essentially linear with

pressure at least up to this pressure.

That this small change of µwat results in such a dramatic filling of the cavity is

remarkable, especially given that the free energy of inserting a water molecule into

oil can be as much as 7 kBT [79]. Unlike the liquid oil we begin with an open cavity,

but the primary contribution to this large energy is that due to lost hydrogen bonds

of the now lone water molecule. The simulation gives us some hints as to how water

in the cavity compensates for this loss. First the water molecules themselves are

hydrogen bonded to each other. This accounts for the cooperative nature of the

transition observed in the simulation, an important feature we must bear in mind.

Previous simulations have shown that this alone is not enough until the cavity is

substantially larger, where it is possible for the water molecules to make many more

hydrogen bonds [72]. The simulations presented here indicate that the protein

interacts strongly with the water molecules. Both of these simulation findings

suggest that further experiments, particularly higher pressure experiments, must

be done to complete our understanding of this system. Ideally the experimental
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pressure range would be extended to at least 5 kbar, where the MD simulations

indicate the cavity should be completely full with water.



Chapter 7

Strongly Interacting Protein Interiors

7.1 New thoughts on protein structure and folding

In the Introduction we saw how modern hydrophobic models can be constructed,

and I introduced the liquid hydrocarbon model of protein folding. While this model

did quite well on some points, it failed utterly on others. At this point, we would

do well to ask what we really believe about protein structure. Specifically, do the

free energies of transferring nonpolar amino acids from oil to water have anything

to do with protein structure? Despite our complaints, the answer still must be

yes. It is no accident that protein structure prediction, using potentials based on

the transfer of amino acid side chains from oils to water, has been so succesful in

recent years. Similarly, it is clear from cavity studies[47–49, 69] that part of the

change in stability due to the cavity-forming mutation comes from a difference in

these transfer free energies.

How are we to reconcile the difficulties of the hydrophobic model with its suc-

cesses?

The answer to which much of the work points is that while the protein does fold

to sequester “hydrophobic” side chains from bulk water, once folded the picture

changes considerably.

7.1.1 Unfolding under pressure

Using the information theory model and simulations described above, Gerhard

Hummer et al. calculated the pressure effects on the potential of mean force (pmf)

175
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between hydrophobic solutes in water. They found that pressure favored the sol-

vent separated minimum, which led them to suggest that pressure unfolding was

due to extensive internal hydration of a protein. That is, instead of completely sol-

vating each hydrophobic group with water, comparitively small numbers of water

a forced into a protein. The volumes of transfer of hydrophobic species from oil to

water would no longer apply directly to proteins, and the hydrophobic model of

folding could be reconciled with the pressure-unfolding data.

A number of problems remain. The apparent principal result of Hummer’s pa-

per is not in fact new. They calculate that pressure favors separation of methane

dimers or trimers and intercalation of one water molecule. The volume associated

with dissociation is therefore negative, in agreement with transfer of hydropho-

bic solutes from their neat liquids to water (see, for instance, Harvey Kliman’s

thesis[157]). Kauzmann’s paradox is not that the sign of the volume change of

protein unfolding disagrees with that of hydrophobic transfer, it is that the magni-

tude is wrong. The problem is that at low pressures, the magnitude of hydrophobic

transfer volumes for small molecules is comparable to that of whole proteins.

But Hummer’s results have a hidden answer to this problem. The volume

change upon intercalating water between methanes works out to be small, on the

order 1-2ml/mol, and is smaller for trimers of methane than for dimers. The second

part of the answer is in the understated existence of a solvent separated minimum

in the pmf. It is not at all clear a priori that any such minimum should exist,

but it turns out to be central to the prediction that the pressure-unfolded state

should involve intercalated water in the protein rather than full solvent exposure

of hydrophobic residues.

Experimentally, there has been no direct evidence for such a solvent-separated
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state, and so we have not be able to verify that the creation and water-filling

of cavities is the mechanism of protein unfolding under pressure. The situation

in a protein has clear differences from the original calculations of pmfs between

methane molecules in water. Will the solvent-separated minimum persist in a

protein where intercalating water cannot make contact with the bulk? We have

shown that such a state can exist, and we can predict at what pressure it would

appear. The following argument is necessarily incomplete. The reader should take

it as a suggestion of how one might proceed rather than as a real hypothesis. The

calculation also suggests what experiments might be done next. In the next section,

we’ll encounter a protein, bacteriorhodopsin, well suited to such experiments.

Let us presume that pressure unfolding involves the formation and subsequent

water-filling of cavities within a protein. We want to calculate the free energy of

creating a cavity under pressure and filling it with water at some density. We’ll

begin from three pieces of information. We know that most small proteins (order

100 residues) have about 1% cavity volume, totalling about 250 Å3 in roughly

7 separate cavities. Cathy Royer has pointed out a correllation between total

cavity volume and unfolding volumes of proteins[7], suggesting that these cavities

may fill with water. However, most will be too small to contain even one water

molecule, and certainly not the three or four water molecules that seem to make

this filling favorable. In bacteriorhodopsin, water is hypothesized to be necessary

for proton pumping[158], but again there is no single cavity which can contain a

water molecule. Simulation and crystallographic evidence suggests that cavities

merge via conformational changes and side chain motions[159], producing a single

larger cavity which can be filled with water. Thus in all likelihood a cavity of the

necessary size for filling is created not by opening up an entirely new cavity, but
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by connecting and expanding pre-existing cavities.

We seek a final cavity volume Vcav. I will denote the fraction of new cavity

volume by f , so we need to create new cavity volume totalling fVcav. There will

be a loss of “hydrophobic contact” energy, estimated from Eriksson et al.[47, 48] as

about 90 J/mol·Å3. This probably does not include increases in side chain entropy,

since it appears that the side chains lining the cavity do not have substantially more

conformational freedom than in the wild-type protein. Probably this is not the case

for cavities which appear in a protein as it unfolds, so we probably overestimate

the cost of creating a cavity in the protein. The cost of opening up a new volume

fVcav in each copy of the protein under pressure p is found from integrating vdp

over the pressure range of interest; If we consider the difference in free energy of

the closed (V = (1 − f)Vcav) and open (Vcav) states, and assume their volumes

are fixed as a function of pressure, this yields a molar free energy difference of

pNAfVcav, where NA is Avagadro’s number. Thus the free energy of opening a

cavity is

∆Gcav = (90 J/mol · Å3 + pNA)fVcav. (7.1)

Next we must consider the free energy difference between the empty and filled

cavity states, which I’ll write as the difference in excess chemical potentials of

water,

∆µex
wat = µex

wat,cav(N, Vcav) − µex
wat,bulk(p). (7.2)

The chemical potential in the cavity is not a function of pressure directly, but

instead a function of the number N of water molecules present and the cavity vol-

ume. The chemical potential of bulk water is here given only pressure dependence.

Now we will have to make a substantial approximation. We do not know the vol-

ume dependence of µex
wat,cav, and we barely know its dependence on N . Thus, for
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the time being, we will approximate that

∆µex
wat =

∂µex
wat,bulk

∂p

∣

∣

∣

∣

P=2kbar

(2 kbar − p) (7.3)

which roughly models our experimental data. The pressure derivative of µex
wat,bulk

is roughly 1.8 kJ/mol·kbar. (This can be derived from pressure-volume data in

the Steam Tables[156]). Finally, we will approximate that each water needs 40 Å3

to be in its most favorable state, based on our cavity volume and the molecular

dynamics result that a water tetramer is the most likely occupant of our cavity at

2 kbar. Then we can write Vcav = 40 Å3N . Note that this is a rough approximation

at best, but it is meant to suggest what can be learned from experiments like ours.

Putting together all of the equations above, we arrive at the following condition

for the midpoint of cavity formation and filling (or unfolding):

0 ≈ N [3.6 kJ/mol(1 + f) + p(2.4 kJ/mol · kbar × f − 1.8 kJ/mol · kbar)] . (7.4)

This equation has a number of interesting features. First of all, the unfolding

pressure does not depend on N (or Vcav). This is probably incorrect, and is a con-

sequence of the approximation in Equation 7.3. However, if one value N dominates

for each Vcav then this approximation is not unreasonable.

Most interestingly, the protein cannot unfold at all unless f . 0.75. In fact, it

appears that f must be less than about 0.52, or the unfolding pressure will exceed

10 kbar, at which point water will freeze. Therefore substantial void volume in a

protein is combined into larger cavities upon unfolding. We can then estimate the

pressure of unfolding for different values of f ; it is plotted in Figure 7.1.

As we can see from the figure, the estimates of unfolding pressures are quite

high. This can be traced to the approximation in Equation 7.3 and possibly also to

the fact that the cavity entropy is ignored. Loss of native contacts upon opening
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Figure 7.1: Unfolding pressures calculated from a simple model. f is the fraction

of new cavity volume which must be opened up to create water-fillable cavities.

Note that above 10 kbar (1GPa) water freezes at ambient temperature. The model

is described in the text.

up wholly new cavity volume should increase the side chain entropy. (Though it

should be noted that in a folded protein, the presence of a cavity need not liberate

its neighboring side chains. This fact will be discussed in Section 7.1.3.)

A reasonable estimate of the side-chain conformational entropy lost on folding

from a random coil state is about 0.5 kcal/mol·K[160], or 0.6 kJ/mol at 300K.

Fourteen amino acids line the L99A cavity. In all likelihood the entropy change

is not so large for cavity creation as it is for unfolding. Nonetheless, at f = 0.5,

every increase of side chain entropy by 0.6 kJ/mol decreases the unfolding pressure

by 1 kbar, according to Equation 7.4.

Another weakness of this calculation is that it does not include any estimate
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of the costs of creating new cavity volume beyond the loss of van der Waal’s in-

teractions. Displacements and rotations of intact helices may allow for such cavity

formation without large energetic costs[159], and could be entropically favorable.

In spite of these weaknesses, the calculation is quite successful. For a small pro-

tein with a volume ≈ 20,000 Å3, and having 1% cavity volume already present, its

resting cavity volume is larger than the unfolding volumes of most small proteins[7].

Since we therefore do not need to create much new cavity volume (if any) in the

unfolding process, small values of the parameter f are not entirely unreasonable,

and we predict unfolding pressures on the order of a few kilobar. The suggestion

that the small unfolding volumes of proteins primarily reflects preexisting cavity

volume is not new[7], and we see here that it is consistent with Hummer’s predic-

tions discussed above.

This model highlights the need for further experiments at higher pressures, over

a range of cavity sizes, and the need for better measurements of side-chain and

water entropy. Experiments like those detailed in Chapters 5 and 6, performed

on other cavity mutants should be able to provide more information that would

improve the model. Particularly interesting would be high-pressure experiments on

cavity-mutants of T4 lysozyme where the structure partially relaxed in response to

the mutation. Here we might hope to reopen the cavities, directly demonstrating

that water could force its way into a protein structure and in the process rearrange

the available cavity volume.

7.1.2 Buried water and protein function

One of the lessons of the previous section is that hydrophobicity is not always

what it seems. As we learned from Chapter 6, the protein interior is not nearly
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as unfavorable to water as oily liquids. The reason for this appears to be van der

Waal’s interactions with the cavity walls and dipole interactions between water

and the peptide electrical dipole, which can be quite strong.

This may seem to be a purely academic excercise, but water is in many cases

central to the biological function of proteins, and has been proposed to be present

in hydrophobic cavities of important metabolic proteins[5, 90, 161]. We’ll consider

two proteins in this class, cytochrome-c oxidase, and bacteriorhodopsin.

Cytochrome-c oxidase is an essential part of the metabolic pathway of most

aerobic organisms[162]. It transfers electrons from cytochrome-c to one of its two

heme groups and produces water in a redox reaction as well as pumping multi-

ple protons across the membrane. The resulting electrostatic gradient is used to

generate ATP for use in the cell[161].

With all proton pumping proteins, the central questions are along what path

the protons will travel, and how the reaction is gated or switched. In the case of

cytochrome oxidases, the problem is yet more complicated, as several successive

electron and proton transfer reactions must take place for the protein to function

properly[161, 162]. As it happens there are two proton conduction pathways,

dubbed the D and K pathways for key residues along the two routes. One of these,

D, begins at a Aspartic acid on the cytoplasmic side of the membrane, and proceeds

along a now well-understood water and polar-residue path in a cavity, ending

just short of the two heme groups at a glutamic acid group and a hydrophobic

cavity[161, 162]. Where it should go from there is not immediately clear.

One suggestion has been that water fills the hydrophobic cavity[90, 161]. In

the most recent iteration[161], a detailed model is proposed which accounts for

water formation by dioxygen reduction and explains the pump mechanism as well.
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Amazingly, the cavity water acts as a wire for protons as well as electrons, and

is actively switched between two important pathways connecting the cytoplasmic

side to the periplasmic side and to the “binuclear” heme a3.

It should not be necessary to consider the details of the model here, but rather

we should ask how our experiment reflects on this proposed mechanism. A number

of important questions are raised which we can answer reasonably well with our

data.

Before now it has been experimentally unclear whether such a model made

any sense at all. The cavity is almost completely hydrophobic, with only one

oxygen (Gly 286 O in PDB code 1M56) lining the cavity, in this sense identical to

the cavity of L99A T4 lysozyme. It is considerably smaller in volume, and much

flatter than the L99A T4 lysozyme cavity, yet 3-4 water molecules are proposed

to be inside[161]. Even by Buckle’s criteria, which suggest that most cavities

thought of as hydrophobic actually have hydrogen bonding sites for each water

molecule present[69], it still would seem unlikely that 4 four water molecules could

be present.

Our data show, in agreement with computer simulations[161], that it is quite

possible for water to be present in such a cavity, provided that the environment

is sufficiently polar to interact with water dipoles. Furthermore, our data indicate

a cooperative effect, so that it is easier for multiple water molecules to enter a

hydrophobic cavity together than one at a time. This cooperativity dovetails

nicely with the concept of water chains as proton “wires”. The implicit inter-

water hydrogen bonding provides a pathway for conducting protons.

A key question then is how the water-carried proton pathway is switched. For

cytochrome-c to function properly, it must first conduct an electron from heme
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a to heme a3, conduct a proton from the cytoplasmic side to the δ-propionate of

heme a3, and finally conduct a proton from the cytoplasmic side to the binuclear

Fe-Cu center of heme a3. The cooperativity is well suited to producing conducting

wires, but something else must switch the conduction state.

From the simulation and observation of water in the T4 lysozyme cavity, it

appears that hydrogen bonding between water molecules is not enough to stabilize

water in a hydrophobic cavity. Electrostatic interactions with the protein are

necessary to make water filling favorable. In cytochrome-c oxidase, this will also

be the case, but the charge environment continues to change as the molecule moves

through its functional cycle. That changing electrostatic environment around the

water may be what switches the orientation of buried water, leading to the observed

proton-pathway switching behavior, as has been suggested previously[161].

It would, however, be a stretch to say that our experiment confirms this model

of proton-pumping, oxygen reduction, and switching behavior in the D-pathway of

cytochrome-c oxidase. The model of proton-transfer in the cytochromes is already

validated by the same sort of molecular dynamics simulation we have used to

understand the energetics of cavity hydration. Those simulations and this thesis

suggest a series of experiments to determine the effects of changing the electrostatic

environment outside of a cavity.

The bacterial photosynthetic protein bacteriorhodopsin (bR) is, like the cy-

tochrome oxidases, a proton pump which generates a proton gradient for use in

the synthesis of chemical energy for the cell[163]. The proton pathway is complex.

A central chromophore, retinal, sits between seven transmembrane helices (Figure

7.2). The retinal is bound to the protein by a Schiff base linkage to Lys216, and

reisomerizes upon absorbing light. A proton is released to Asp85 on the extracellu-
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lar side, after which the Schiff base accessibility switches to the cytoplasmic (CP)

side and is reprotonated from Asp96. Electrostatically this is far from trivial. The

Asp96 has a high pKa relative to the Schiff base, allowing it to hold onto its proton

long into the photocycle, due to its highly hydrophobic environment ([158, 159, 164]

and see Figure 7.3). Luecke et al.[164] suggested transient intercalation of one or

more water molecules into this otherwise hydrophobic environment lowers the pKa

of Asp96, allowing it to reprotonate the Schiff base. They also suggest[158] that

this water stabilizes a non-proline kink in helix G which is important in the reiso-

merization of retinal. Buried water in a hydrophobic environment is also likely to

be necessary to lower the free energy barrier for proton transfer to Asp96, believed

to come from Asp38, some 10 Å away. The tunnel between these two residues is

almost entirely lined by hydrophobic residues, and in several crystal structures is

closed off from outside solvent[159].

We have already seen that intercalating water into buried, hydrophobic cavities

is not especially costly. With the charged interactions that would be present during

the photocycle of bR and the presence of some polar residues in the hydrophobic

proton passageway, it is now not hard to imagine that water can favorably enter

this protein during some parts of its photocycle. Two other points are worth note

in this unusual system.

The hydrophobic environment surrounding Asp96 may provide a number of

potentially useful characteristics for buried water. Since water will not strongly

bond to anything in the cavity (except, perhaps, the Aspartic acid) the nonpolar

residues provide insulation and specificity to the proton conduction. If the water is

not attracted to the cavity walls, it should be rotationally flexible, and on average

will find itself in the center of the cavity. Thus a lack of specific interactions
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Figure 7.2: Structure of bacteriorhodopsin. View of the extracellular side.
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Figure 7.3: Cytoplasmic face of bR. Key charged residues and the retinal chro-

mophore are shown as van der Waals spheres or sticks, and hydrophobic residues

are colored orange.
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can influence structure. If several water molecules are involved, their attraction

for each other, and effective repulsion from cavity walls, will hold them in the

correct orientation to act effectively as proton wires, much as they do in carbon

nanotubes[73].

Even more interesting is that the direct path between Asp38 and Asp96 (shown

in Figure 7.3 as a yellow line) is too narrow for water to be permanently in

place[159]. In order for water to be present in the cytoplasmic channel of bR, con-

formational changes must expand or merge existing cavity volume. High-pressure

spectroscopic measurements of bR photocycle kinetics do indicate positive activa-

tion volumes for each of the steps of the photocycle[5]. This may be consistent

with water entering a hydrophobic cavity in the cytoplasmic side of bR.

The high-pressure kinetic observations, coupled with bR’s need for a proton

conduction pathway, and our understanding of water in hydrophobic spaces suggest

an obvious experiment. If the model of bR is correct, when subjected to pressure,

the protein should undergoe conformational changes which allow it to accomodate

water in buried, mostly hydrophobic cavities. Such an experiment would provide

a host of interesting data. Is such rearragement to accomodate water possible?

Answering this question should yield more insight into the nature of pressure un-

folding. What is the free energy cost of these structural rearrangements? We can

perhaps learn more about the photocycle of bR through thermodynamic experi-

ments. Answering these questions will help better understand what role buried

water may play this protein, which remains a subject of debate[165].

The final protein to consider here is Staphylococcal nuclease. As mentioned

above, measurements of pKa for buried titratable residues indicated unexepectedly

high dielectric constants. It has been unclear from the original evidence whether
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this was due to water buried in the protein[83]. Our data are unambiguous on

this matter. Water should be easily buried even in a hydrophobic environment,

especially in the presence of a titratable acidic residue.

7.1.3 Side chain flexibility

A major focus of debate about the hydrocarbon model of the protein interior[66]

has been the balance between conformational flexibility and rigidity of proteins.

Jie Liang and Ken Dill put it best: “Is a protein packed more like a liquid or a

solid?[93]” F.M. Richards was first to point out that the average density of proteins

was nearly that of amino-acid crystals[70]. Cyrus Chothia’s work later indicated

that the packing density in the core might be higher than that of crystals[166] (al-

though this certainly makes clear that when we say “crystals”, we are not speaking

of hexagonally close packed lattices and the optimal packing densities of spheres.)

Thus we might be led to believe that the core of a protein is solid.

On the other hand, proteins are frequently tolerant to an amazing array of

mutations[93, 167, 168], with some caveats[168], suggesting that proteins are at

least plastic in their folded forms.

More recent analytical techniques (see Section 5.2.3) and the vast increase in

crystallographically resolved protein structures since Richards’ original work have

allowed better studies of amino acid side chain packing in proteins. The general

conclusion that packing densities are high remains unchanged. The new result is

that even with this high packing density, the distribution of void volume in proteins

more closely resembles that of liquids[93].

Furthermore, the distribution of cavity sizes closely resembles that of random

spheres near percolation thresholds[93]. This finding leads the authors to conclude
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that proteins are more like random spheres than a “jigsaw puzzle” of a well packed

solid.

Another curious result of this recent study is that protein unfolding enthalpies

per residue are virtually independent of the packing density of proteins[93]. This

seems at odds with many of the cavity-mutation studies which indicate a significant

role for non-specific van der Waals interactions between buried nonpolar residues

(e. g. [47, 48, 69, 168]). The authors of the recent study[93] seem to feel that

the packing density of the protein core is more an accident than anything truly

important.

One issue we raised previously with the hydrophobic model is the apparent

negative correlation between buried hydrophobic surface area and the enthalpy

of unfolding. That is, as the protein interior becomes more polar, the folded

state becomes more stabilized, apparently contrary to the hydrophobic model.

One suggested explanation [67] was that this reflected the near close-packing of

the protein interior, which would maximize van der Waals interactions, relative

to the unfolded, solvated protein. Such an explanation implies that the polar

interactions “stitch up” the interior to pull atoms closer together[67]. However even

that explanation leaves something to be desired, since large amounts of buried polar

surface area seem to increase conformational flexibility in at least some cases[169].

So which is it? Liquid, solid, or something else? And does this in fact tell us

anything about protein stability or function?

The answer appears to be “something else”. The protein interior is (by crystal

standards) disordered, but the atoms are still not free to diffuse throughout the

interior. If we return to the discussion, in Chapter 5, of the comparative structural

changes between the WT* T4 lysozyme and large-cavity containing mutant L99A,
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we see that the cavity makes almost no difference to the pressure response of the

protein. Only one small region shows substantial differences, and that region sits

in the least constrained electron density of the entire protein!

One might expect[94, 160] that the introduction of a cavity into the non-

specifically stabilized protein core would increase fluctuations of side chains. With

increased fluctuations, we expect increased compressibility (see Equation 1.4). If

nothing else, for an anisotropic solid presumably stabilized by non-directional inter-

actions, pressure ought to somehow deform a cavity like that in L99A T4 lysozyme.

The total possible work energy of collapsing this cavity volume at 200MPa is

2 × 108 Pa × 180 × 10−30 m3 × 6.023 × 1023 mol−1 ≈ 22 kJ/mol,

or about 8 kBT ! Under no circumstance can we call this a liquid. But does the

protein’s rigid response to compression tell us that it is like a crystalline solid?

Additionally the temperature factors of residues immediately lining the cavity

are lower than anywhere else in the molecule (see Figure 5.4). This may provide a

clue into the surprising rigidity of this region.

We can make no definitive statements about the origins of this rigidity, but we

can speculate somewhat. To begin, let’s ask what makes a structure rigid? The

simplest incompressible structure consists of four identical hard spheres tetrahe-

drally packed (that is, three form an equilateral triangle, and the other is stacked

in the interstitial dimple between the first three). No hydrostatic compression can

reduce the volume of this system.

Another rigid structure without such well defined packing is a glass. Window

glass is essentially random, and may contain large bubbles of air but be very

resistant to shear forces. In a random packing of spheres, cavity collapse must be
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resisted by strong interactions between atoms (as those between silicon and oxygen

atoms in the glass) which resist the inevitable anisotropic forces of compression

along the cavity wall.

So two features which yield rigidity are large packing density and strong, di-

rectional interactions between atoms.

In a putatively hydrocarbon interior, there are no strong, directional forces,

only van der Waals forces. A large cavity in a protein as that described by the

picture of Liang and Dill[93] should most certainly collapse under pressure. There

are two possibilities that may explain the observed rigidity. Probably the real

answer to the puzzle is a combination of these two. They are summarized in

Figure 7.4.

The first possibility is that the side chains have nothing to do with the ob-

served rigidity. The cavity is contained in an entirely α-helical domain, and buried

deeply. Helices are known to form cooperatively[67] and are stabilized by intra-

helix backbone hydrogen bonds[25] so that they are fairly rigid even in solution.

In addition the side chains generally lose flexibility upon helix formation, even for

isolated helices[160]. In such a view we can picture helices as rigid cylinders with a

perhaps somewhat soft outer coating. A bundle of these helices can only compress

so far, regardless of whether we pack them together poorly.

Relaxing the constraint of rigid helices, another possibility is that the side

chains themselves are interlocked and do not fluctuate individually, akin to sug-

gestions by Mulder et al.[95]. Side chains are held in rough orientation merely by

the topology of the surrounding helix backbone (see black and grey dots repre-

senting connections to the backbone in Figure 7.4). In this picture, cavity lining

side chains may have some conformational flexibility, but cannot make subtantial
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Figure 7.4: Structural basis for rigidity. (Top) Rigid cylinders, even with soft

boundaries, can approach only to a minimum separation. Light grey: rigid core

(helix backbone), medium grey: partially liquid side chains, dark grey: overlap

regions resulting in excluded volume repulsion. (Bottom) Interlocked, densely

packed side chains cannot move past each other if they are constrained (grey and

black dots) not to rotate.
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rearrangements without unfolding the protein. Here rigidity arises as a result of

interlocked surfaces of atoms. The topology of the protein is important: without

some constraints, the side chains in Figure 7.4 could collapse. Thus rigidity is a

cooperative property between the surface roughness of each helix, and the rough

topology of the backbone, but it need not depend on the rigidity of the backbone

itself.

The obvious complaint with such a model as that in Figure 7.4, the cavity

is always inaccessible to water. This is true, if proteins were two-dimensional.

On the other hand, in three dimensions, pathways into cavities’ rigid, interlocked

structures are completely permissible. Consider C60, fullerene. We can remove

many of the carbon atoms, or even whole hexagons or pentagons of carbon, without

affecting the overall rigidity of the molecule. Alternatively, consider a stone turret.

The turret can of course have windows which open and close without affecting its

overall rigidity.

A still somewhat unresolved problem in protein folding is whether secondary

structure forms first (as a result, for instance, of the helical propensity for certain

amino-acid sequences) or whether helix and sheet formation is a result of tertiary

contacts[67, 170]. If helices form first, before they associate into tertiary domains,

we might loosely expect that the first of our two possibilities for rigidity dominates.

In this case, however, the crystallographic temperature factors of the side chains

ought to be higher than we observe. Moreover, in the rigid helix picture, there is

still room for the helices to slide past each other or rotate with respect to each

other, something we observe in only one location (the D helix).

The best evidence for interlocked amino acid side chains giving rise to cavity

rigidity may actually come from other parts of the protein. At least one helix is
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seen to bend substantially (the cavity end of helix C) in both the WT* and L99A

proteins. As noted in Chapter 5, an impressive set of interatomic contacts appears

to lock the middle of helix C in place, but its less sterically constrained ends are

quite flexible. A helix’s rigidity must involve side-chain steric constraints from

residues not part of that helix.

Thus our data seem to indicate, albeit weakly, that interlocked side chains are

partially responsible for this rigidity. This may be a sign of secondary structure

formation stabilized by tertiary contacts made before the protein is fully folded.

This is akin to the nucleation-condensation picture of protein folding[171] and

the idea of constrained hydrophobic collapse[67]. In both pictures, hydrophobic

contacts form a core around which helices or sheets form, driven by their intrinsic

propensities and hydrogen bonding.

Unfortunately our data are weak on this subject. Higher pressures, where the

deformations are more evident, may help tease out the nature of rigidity in this

protein. NMR methods may be able to directly measure the dynamics of side

chains and better determine the effects of the cavity mutation. For now, we can

only speculate. Destabilizing cavity lining helices, and introducing further cavity-

forming mutations into this region may help to separate out the two hypotheses

of rigidity mentioned above. Such studies may help us to understand what drives

the formation of helices and tertiary structure in this lysozyme.

7.2 The Janus face of water

The most robust conclusion that arises out of this thesis is that the behavior of

nonpolar residues in the thermally unfolded state is different from that in the folded
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or even pressure unfolded state. This two-faced behavior is, once again, really a

property of water and not so much of the protein itself.

There is a very close connection to the formation of clathrates in water. These

highly ordered solvent cages around nonpolar solutes such as methane are not sta-

ble at ambient pressure. But with only mild pressures (. 120 bar), these clathrate-

hydrate structures will form around atoms such as Krypton[58, 172]. The keys to

this formation are the van der Waals interactions between water and the guest

nonpolar molecule or atom. This interaction compensates for the loss of entropy

upon forming the cage-like structure of water.

In the case of a cavity-containing protein, we again see that it is these same

weak van der Waals interactions which ultimately stabilize water in “nonpolar”

environments within the protein. Pressure perturbs the bulk water just enough to

tip the balance. Both effects are predicted from the solvent-separated minimum in

the potential of mean force between nonpolar solutes in water, as discussed earlier

in this chapter.

There are some differences, of course. The clathrate-hydrate of a nonpolar

guest retains its hydrogen bonded structure, and probably becomes even more

hydrogen bonded, further lowering its enthalpy. Water in the L99A cavity cannot

do this. Increased entropy, and possibly stronger van der Waals interactions, must

compensate for this enthalpic loss. This loss of hydrogen bonding is also the reason

that our cavity hydrates at pressures well above those at which clathrates form

around small nonpolar solutes.

What is really new in our experiment is the demonstration that the context

in which the water finds itself can have dramatic impacts on how these unusual

features of water will manifest themselves. I cannot help but wonder whether a
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hydrophobic environment is in fact the best environment in which to harness the

unusual electrostatic properties of water.

I have also shown that water is constantly moving in and out of proteins. If

the presence of water in the L99A lysozyme at 2 kbar is favorable, and water can

continue to fill the cavity up to this pressure, then the free energy penalty of

water filling the cavity at ambient pressure is not large, and the cavity should be

accessible at ambient pressure. Perhaps the kinetics of water passing in and out

of the cavity change, but water is finding its way in and out of proteins, even

into extremely hydrophobic regions. Is there in fact any reason to expect that

there is only one pathway? We only observed one pathway in the simulations, but

those simulations are only nanoseconds long, while we know that for compounds

like benzene the timescale for entry into the cavity is millisecond[95]. It seems

more likely that water is penetrating into many parts of the protein at all times.

I have already examined some consequences of the presence of equilibrium water

in proteins, but the consequences of transient water populations in proteins are

potentially much farther reaching.

Until very recently, the explicit role of water in hydrophobic macromolecu-

lar assembly has been downplayed, often being treated through continuum elec-

trostatic methods or by burying it in contact potentials between hydrophobic

groups[23, 67, 78]. But it is increasingly clear that the specific, molecular level

properties of water are important to protein structure and function, as evidenced

by many recent theoretical studies[19, 21, 23, 59–61, 67, 72] This thesis provides

an experimental verification that water behaves very differently depending on its

context and environment, and suggests a way forward to quantify this behavior.
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7.3 Future directions

By now it should be clear that pressure has allowed us to learn a great deal about

proteins. As always, many questions remain open. What is the volume dependence

of cavity filling by water? What is the entropy of filling a cavity with water? These

questions can be answered straightforwardly, building on the work described in this

thesis.

Measurement of the dielectric constant of protein interiors has remained chal-

lenging, but now we have a potential new method to determine this important

parameter. Isosteric charged residue substitutions or changes in pH should lead to

changing electrostatic environments in proteins, and in cavities inside the protein.

This should, if our experiments are correct, change the cavity hydration behav-

ior, but in a way which depends on the charge screening behavior of the material

between the cavity and the charged substitution. High pressure cavity-filling ex-

periments with other polar solvents, such as alcohols, or with deuterated water

may also provide insight into the interactions between water and protein interiors.

Pressure unfolding theories need a next test, and that is to see whether pressure

can force a cavity to grow by flooding it with water. Other mutants of T4 lysozyme

whose cavities partially collapse from the WT* structure are excellent candidates

for such studies, as is bacteriorhodopsin.

Finally, the amazing rigidity of T4 Lysozyme under hydrostatic pressure re-

mains something of a mystery. Further experiments on the wide variety of cavity

mutants of this protein would establish whether this is a general phenomena or a

special case. Mutations along the cavity wall, and in the helices of the C-terminal

domain, of the L99A mutant may also help to understand the interactions between
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side chains in the folded protein and what role they play in rigidity. Such experi-

ments should help us to understand protein folding processes better. Theoretical

methods, based on rigidity percolation and normal mode analysis, may also be

useful.



Appendix A

Refinement scripts

A.1 Master refinement script

This script, refine, is called by higher level shell scripts which input specific
parameters (such as the unit cell dimensions) for a given data set.

#!/ usr / b in / p e r l −w

use F i l e : : Basename ;
use s t r i c t ;

# Refine genera te s then runs CCP4 t o o l s to au t oma t i c a l l y
r e f i n e pro te in

# pro te in s t r u c t u r e s from ∗ . mtz data .

# De fau l t parameters ( ncyc , i n i t i a l va lues , e t c . . . )
my $sym = ” ’ p3221 ’ ” ;
my $arp sym = ’P3221 ’ ;
my $freeRFrac = ’ 0 .05 ’ ;
my $ncyc = 5 ; #number o f c y c l e s f o r i n i t i a l re f inement .

my $home ;
my $tmp = ”/tmp/marcus/” ;
i f (−e ”/home/marcus” ) {

$home = ”/home/marcus” ;
print ” I t appears that you are us ing a Linux−l i k e

system\n\n” ;
} e l s i f (−e ”/Users /Marcus” ) {

$home = ”/Users /marcus” ;
print ” I t appears that you are us ing OSX.\n\n” ;

} else {
print ” I can ’ t t e l l what f i l e s t r u c tu r e you are us ing

. . . qu i t t i ng .\n” ;
exit ;

}

# Flag to s k i p r i g i d body re f inement
my $skipRBR = ’ no ’ ;

# Fi r s t check f o r the ” conver t sca to mtz only ” f l a g

200
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my $conver t on ly = ’ no ’ ;
i f ($ARGV[ 0 ] eq ’−so ’ ) {

sh i f t @ARGV;
$conver t on ly = ’ yes ’ ;

}

my $ f r e e R f i l e = ’ ${home}/ rcsb / freeR . mtz ’ ;
i f ($ARGV[ 0 ] eq ’− f r ’ ) {

sh i f t @ARGV;
$ f r e e R f i l e = sh i f t @ARGV;

}
print STDOUT ”Using f i l e $ f r e e R f i l e f o r t e s t s e t g ene ra t i on

( i f conver t ing from . sca )\n” ;

# Arguments in : l o c a t i o n o f the mtz f i l e .
my ( $ ful lF i leName , $ce l lparams , $res , $pdb f i l e ) = @ARGV

[ 0 , 1 , 2 , 3 ] ;
my @res = sp l i t ” ” , $ r e s ;
die ” F i l e does not e x i s t : $ fu l lF i l eName ”

unless −e $ fu l lF i l eName ;
my ( $ f i l e , $workingDir , $type )

= F i l e : : Basename : : f i l e p a r s e ( $ ful lF i leName , qr {\ .\w+}) ;
#pr in t ” $ f i l e , $workingDir , $ type \n”;
my $ImportFlag = ’ no ’ ;
i f ( $type eq ’ . sca ’ ) {

$ImportFlag = ’ yes ’ ;
} e l s i f ( $type eq ” . mtz” ) {

print STDOUT ”Recognized mtz f i l e ext ens i on .\n” ;
} else {

die ”Cannot read f i l e type $type !\n” ;
}

# Open any necessary f i l e s ( note l o g f i l e s are opened
i m p l i c i t l y l a t e r )

open RIG, ”> ${workingDir} r i g i d . com” ;
chmod 0777 , $workingDir . ’ r i g i d . com ’ ;

open SUM, ”>> ${ f i l e } . sum” ;

# Fi r s t import the data i f necessary , and wr i t e an
appropr i a t e . mtz

i f ( $ImportFlag eq ’ yes ’ ) {
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open COM, ”> ${workingDir}tmp . com” ;
print COM ”#!/bin /bash \n” ;
print COM ”

scalepack2mtz HKLIN $fu l lF i l eName HKLOUT $tmp${ f i l e } . mtz .
tmp <<eor

symmetry $sym
c e l l $ce l lparams 90 .0 90 .0 120 .0
r e s o l u t i o n $ r e s
s c a l e 1 . 0
anomalous −

NO
PNAME $ f i l e
DNAME $ f i l e
end
eor

t runcate HKLIN $tmp${ f i l e } . mtz . tmp HKLOUT $tmp${ f i l e } . mtz .
trn <<eor

t runcate −
YES

anomalous −
NO

nres idue 1
p lo t −

OFF
labout IMEAN=IMEAN $file SIGIMEAN=SIGIMEAN $file F=F $ f i l e

SIGF=SIGF $ f i l e
f a l l o f f −

yes
PNAME $ f i l e
DNAME $ f i l e
RSIZE 80
end
eor

mtzut i l s HKLIN $tmp${ f i l e } . mtz . trn HKLOUT $tmp${ f i l e } . mtz .
i nc <<eor

inc lude F $ f i l e S IGF $ f i l e
end
eor \n\n” ;

unless (−e ”${ f r e e R f i l e }” ) {
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print STDERR ”Generating new unique r e f l e c t i o n s e t
and FreeR f l a g s .\n\n” ;

print COM ”
unique HKLOUT ${home}/ rcsb /unique . mtz <<eor
CELL $ce l lparams 90.0000 90.0000 120.0000
SYMMETRY ’P 32 2 1 ’
LABOUT F=FUNI SIGF=SIGFUNI
RESOLUTION $re s [ 1 ]
end
eor

f r e e r f l a g HKLIN ${home}/ rcsb /unique . mtz HKLOUT ${home}/ rcsb
/ freeR . mtz <<eor−f r e e

FREERFRAC $freeRFrac
end
eor−f r e e \n\n” ;

}
print COM ”

cad HKLIN2 ${home}/ rcsb / freeR . mtz HKLIN1 $tmp${ f i l e } . mtz .
i nc \\

HKLOUT $tmp${ f i l e } . mtz . cad <<eor−cad
LABI FILE 2 E1=FreeR f lag
LABI FILE 1 ALLIN
END
eor−cad

f r e e r f l a g HKLIN $tmp${ f i l e } . mtz . cad HKLOUT $workingDir${
f i l e } .mtz <<eor−f i n a l

COMPLETE FREE=FreeR f lag
END
eor−f i n a l
” ;

chmod 0777 , $workingDir . ’ tmp . com ’ ;
system ”${workingDir}/tmp . com >> ${ f i l e } . imp . l og ” ;

}

die ”Fin i shed sca−>mtz conver s i on and ex i t i n g .\n” i f

$conver t on ly eq ’ yes ’ ;

print ”Continuing on to re f inement . . . \ n” ;
print ”Rig id body re f inement us ing ${workingDir} r i g i d . com\n

” ;
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print RIG ”
#!/bin /bash

s e t −e

refmac5 HKLIN ${workingDir}${ f i l e } . mtz HKLOUT ${workingDir}
${ f i l e } . r i g . mtz \\

XYZIN $pdb f i l e XYZOUT $workingDir${ f i l e } . r i g . pdb << eor

LABIN FP=F $ f i l e SIGFP=SIGF $ f i l e FREE=FreeR f lag
LABOUT FC=FC PHIC=PHIC FWT=2FOFCWT DELFWT=FOFCWT

REFI TYPE RIGI RESI MLKF
REFI BREF OVER METH CGMAT
FREE 0

SCAL TYPE BULK
SCAL LSSC ANISOT
SCAL LSSC FIXB BBUL 150\n” ;

print STDOUT ”Warning : f i x i n g BBUL at 1 5 0 . . . \n” ;
print RIG ”
MONI MEDI
RIGI NCYC 15
END
eor \n” ;
close RIG;

i f ( $skipRBR eq ’ no ’ ) {
system ”${workingDir} r i g i d . com > r i g i d . l og ” ;

print SUM ” Resu l t s o f r i g i d body re f inement f o l l ow : \n” ;
my $header = ”\ t Ncyc\tR\ tRf ree \tFOM\trmsBOND\trmsANGLE\

trmsCHIRAL\n\n” ;
print SUM $header ;
print $header ;
open IN , ”< r i g i d . l og ” ;
my $R ;
my $Rmax = 0 . 3 ;
while(<IN>) {

i f (/ˆ\ s+(\d+)\s+(0.\d{3})\s+0.\d+/) {
print SUM;
print ;
$R = $2 ;
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}
}
close IN ;
i f ($R > $Rmax) {

print ”R−value $R i s h igher than $Rmax . Reindexing .\n”
;

open REIND, ”> ${workingDir} r e ind . com” ;
chmod 0777 , ”${workingDir} r e ind . com” ;
rename ”$workingDir${ f i l e } . mtz” , ” $workingDir${ f i l e }

bad . mtz” ;
print REIND ”

#!/bin /bash
re index HKLIN $workingDir${ f i l e } bad . mtz HKLOUT

$workingDir${ f i l e } . mtz <<eor
re index HKL −h,−k , l
end
eor
” ;

close REIND;

system ”${workingDir} r e ind . com” ;

# That i sn ’ t e v e r y t h i n g . . . need to re−r e f i n e with r i g i d
body re f inement . . .
system ”${workingDir} r i g i d . com > ${workingDir} r i g i d 2 .

l og ” ;
open IN , ”< ${workingDir} r i g i d 2 . l og ” ;
my $R ;
my $RMax = 0 . 3 ;
print SUM ”Values f o r re indexed data . . . \ n” ;
while(<IN>) {

i f (/ˆ\ s+(\d+)\s+(0.\d{3})\s+0.\d+/) {
print SUM;
print ;
$R = $2 ;

}
}
close IN ;
i f ($R > $Rmax) {

print STDOUT ”Unable to r e f i n e s a t i s f a c t o r i l y !
Exi t ing NOW!\n” ;

exit ;
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}
}

print SUM ”Check these c a r e f u l l y f o r convergence !\n” ;
}

# We can now beg in f u l l out r e s t r a i n ed re f inement . Setup
var i ous important parameters

# and f i l enames f i r s t .

my $weight = 0 . 3 ;
my $ARPXYZIN = ”${workingDir}${ f i l e } . r i g . pdb” ;
my $ARPXYZOUT = ”${tmp}water . pdb” ;
my $RM5XYZOUT = ”${workingDir}${ f i l e } . pdb” ;
my $HKLIN = ”${workingDir}${ f i l e } . r i g . mtz” ;
my $RM5HKLOUT = ”${workingDir}${ f i l e } . r e s . mtz” ;

# These parameters are used by ARP waters to f i n d water ,
and we want to

# d i s p l a y maps l a t e r in O us ing the same cu t o f f s , in order
to e v a l ua t e t h e i r

# r a t i o n a l i t y and the succe s s o f ARP in f i nd i n g water .

my $a rp cyc l e s = 10 ;
my $cutFIND = 3 . 0 ;
my $cutREMOVE = 1 . 0 ;
my $cutN = 20 ;
my $findN = 20 ;

foreach my $cyc l e ( 1 . . $ a rp cyc l e s ) {
print STDOUT ” Ref in ing at weight $weight . . . Cycle : $ cyc l e

Set : $ f i l e \n” ;
open RESTR, ”> ${workingDir} r e s t r a i n $ { cyc l e } . com” ;
chmod 0777 , ”${workingDir} r e s t r a i n $ { cyc l e } . com” ;

print RESTR ”
#!/bin /bash

# Maps f o r ARP waters , which we ’ l l run on the output o f
r i g i d body re f inement f i r s t .

f f t HKLIN $HKLIN MAPOUT ${tmp} d i f f .map . tmp <<eor
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s c a l e F1 1 .0
s c a l e F2 1 .0
l ab i n −

F1=F $ f i l e SIG1=SIGF $ f i l e F2=FC PHI=PHIC
end
eor

mapmask MAPIN ${tmp} d i f f .map . tmp MAPOUT ${tmp}${ f i l e } . d f .
map << eor

XYZLIM 0 .0 1 .0 0 . 0 1 . 0 0 . 0 0 .1667
end
eor

f f t HKLIN $HKLIN MAPOUT ${tmp}map. tmp <<eor
s c a l e F1 2 .0
s c a l e F2 1 .0
l ab i n −

F1=F $ f i l e SIG1=SIGF $ f i l e F2=FC PHI=PHIC
end
eor

mapmask MAPIN ${tmp}map . tmp MAPOUT ${tmp}${ f i l e } .map <<
eor

XYZLIM 0 .0 1 .0 0 . 0 1 . 0 0 . 0 0 .1667
end
eor

arp water s XYZIN $ARPXYZIN XYZOUT $ARPXYZOUT \\
MAPIN1 ${tmp}${ f i l e } .map MAPIN2 ${tmp}${ f i l e } . d f

.map <<eor
MODE update waters
SYMM $arp sym
RESO $re s
FIND atoms $findN chain W cutsigma $cutFIND
REMOVE atoms $cutN cutsigma $cutREMOVE merge 2 .2
REFI waters
end
eor

refmac5 HKLIN $workingDir${ f i l e } . mtz HKLOUT $RM5HKLOUT \\
XYZIN $ARPXYZOUT XYZOUT $RM5XYZOUT <<eor

LABIN FP=F $ f i l e SIGFP=SIGF $ f i l e FREE=FreeR f lag
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LABO FC=FC PHIC=PHIC FWT=2FOFCWT DELFWT=FOFCWT

FREE=0

WEIG MATR $weight

REFI TYPE REST RESI MLKF
REFI BREF ISOT METH CGMAT

SOLV YES

SCAL TYPE BULK
SCAL LSSC ANIS
SCAL LSSC FIXB BBUL 200

MAKE HYDR N
MONI MEDI
NCYC $ncyc
END
eor

” ;
close RESTR;

system ”${workingDir} r e s t r a i n $ { cyc l e } . com > ${workingDir}
r e s t r a i n $ { cyc l e } . l o g ” ;

open IN , ”< ${workingDir} r e s t r a i n $ { cyc l e } . l o g ” ;
my ( $n , $curR , $curRfree ) = (0 ,1 , 1 ) ;
print SUM ” Rest ra ined re f inement r e s u l t s f o r weight

$weight cyc l e $ cyc l e \n” ;
print ” Resu l t s f o r weight $weight \n” ;
while(<IN>) {

i f (/ˆ\ s+(\d+)\s+(0.\d{3})\s+(0.\d+)/) {
print SUM;
print ;
i f ( $2 < $curR ) {

$n = $1 ;
$curR = $2 ;
$curRfree = $3 ;

}
}

}
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close IN ;

# change the input f i l e s f o r f f t /mapmask/ arp waters
$ARPXYZIN = ”$RM5XYZOUT” ;
$HKLIN = ”$RM5HKLOUT”

}

# I t turns out t h a t the output o f Refmac 5 doesn ’ t produce
water mo lecu le s t h a t O can

# read e a s i l y . I t i s unc lear why t h i s shou ld be , s ince
Refmac 5 can read them j u s t f i n e .

# (At l e a s t , i t does r e f i n e the new water mo lecu le s ’
p o s i t i o n s . . . ) In any case , we ’ l l use

# pdbse t to f i x the problem .

open PDBSET, ”> ${tmp}${ f i l e } s e t . com” ;
chmod 0777 , ”${tmp}${ f i l e } s e t . com” ;
print PDBSET ”#!/bin /bash

pdbset XYZIN $RM5XYZOUT XYZOUT ${tmp}${ f i l e }tmp . pdb <<eor

r ep l a c e −
r e s i due HOH by WAT

rep l a c e −
atom \”OW0\” by \” O\” in WAT

rep l a c e −
atom \”OW0\” by \” O\” in HOH

end
eor

mv ${tmp}${ f i l e }tmp . pdb ${workingDir}${ f i l e } . pdb” ;

close PDBSET;
system ”$tmp${ f i l e } s e t . com” ;

# Fina l l y , make some maps , cut any junk out o f the pdb f i l e
i f i t i sn ’ t a c t u a l l y in

# dens i ty , us ing ARP.
open MAP, ”> ${workingDir}map. com” ;
print MAP ”
#!/bin /bash



210

f f t HKLIN $RM5HKLOUT MAPOUT ${tmp} d i f f .map . tmp <<eor

s c a l e F1 1 .0
s c a l e F2 1 .0
l ab i n −

F1=F $ f i l e SIG1=SIGF $ f i l e F2=FC PHI=PHIC
end
eor

mapmask MAPIN ${tmp} d i f f .map . tmp MAPOUT ${workingDir}${ f i l e
} . d f .map \\

XYZIN ${workingDir}${ f i l e } . pdb << eor
BORDER 5
end
eor

f f t HKLIN $RM5HKLOUT MAPOUT ${tmp}map. tmp <<eor

s c a l e F1 2 .0
s c a l e F2 1 .0
l ab i n −

F1=F $ f i l e SIG1=SIGF $ f i l e F2=FC PHI=PHIC
end
eor

mapmask MAPIN ${tmp}map . tmp MAPOUT ${workingDir}${ f i l e } .map
\\

XYZIN ${workingDir}${ f i l e } . pdb << eor
BORDER 5
end
eor ” ;
chmod 0777 , $workingDir . ’map . com ’ ;
system ”${workingDir}map. com > ${workingDir}map . l og ” ;

# And how about an . omac s c r i p t to load important f i l e s ?
# Note t h a t fm f has two ex t ra ”no” statements−−t h e s e are

dummies
# to avoid having to put in symmetry f i l e s . O j u s t goes on

, saying ,
# ”we l l , dork , I don ’ t know what ’no ’ means here .”
my $molname = $ f i l e ;
$molname =˜ s / [ t ] // g ;
open OMAC, ”> $workingDir${ f i l e } . omac” ;
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print OMAC ”fm z d i f f \n” ;
print OMAC ”fm z norm\n” ;
print OMAC ”pdb r $workingDir${ f i l e } . pdb $molname y y\n” ;
print OMAC ” fm f $workingDir${ f i l e } . d f .map d i f f ;\n” ;
print OMAC ” fm s d i f f 15 .0 s o l i d 2 −$cutFIND red $cutFIND

green\n” ;
print OMAC ”fm d d i f f \n” ;
print OMAC ” fm f $workingDir${ f i l e } .map norm ;\n” ;
print OMAC ” fm s norm 15 .0 s o l i d 1 $cutREMOVE white\n” ;
print OMAC ”fm d norm\n” ;
print OMAC ” ce a t A99 CB\n” ;

close OMAC;
print ”Thanks f o r r e f i n i n g with us !\n” ;
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A.2 Calling scripts

This script calls the master refinement script for the L99A mutant datasets. A
similar script exists for WT* data.

#!/ b in / bash

MUTAMB=/Users /marcus/ rcsb /1L90 . pdb
RCSB2k=/Users /marcus/HPt4/ f i n a l /mt2kstart . pdb
RCSB1k=/Users /marcus/HPt4/ f i n a l /mt1kstart . pdb
RCSB0k=/Users /marcus/HPt4/ f i n a l /mt0kstart . pdb
BASE=/Users /marcus/HPt4

echo ’ Re f in ing Mutants at 2 , 1 . 5 , 1 , and 0 kbar ’
r e f i n e $BASE/mt2k 8/mt2k 8 . mtz ” 60.594 60.594 95.646 ” ” 30 .0

2 . 1 ” $RCSB2k
r e f i n e $BASE/mt2k 1/mt2k 1 . mtz ” 60.604 60.604 95.708 ” ” 30 .0

2 . 1 ” $RCSB2k
r e f i n e $BASE/mt2k 3/mt2k 3 . mtz ” 60.627 60.627 95.600 ” ” 30 .0

2 . 2 ” $RCSB2k

r e f i n e $BASE/mt1 5k 1/mt1 5k 1 . mtz ” 60.680 60.680 95.805 ” ”
30 .0 2 . 1 ” $MUTAMB

r e f i n e $BASE/mt1k 9/mt1k 9 . mtz ” 60.755 60.755 96.052 ” ” 30 .0
2 . 1 ” $RCSB1k

r e f i n e $BASE/mt1k 6/mt1k 6 . mtz ” 60.760 60.760 96.070 ” ” 30 .0
2 . 1 ” $RCSB1k

r e f i n e $BASE/mt1k 7/mt1k 7 . mtz ” 60.768 60.768 96.077 ” ” 30 .0
2 .15 ” $RCSB1k

r e f i n e $BASE/mt0k 1/mt0k 1 . mtz ” 60.967 60.967 96.581 ” ” 30 .0
2 . 4 ” $RCSB0k

r e f i n e $BASE/mt0k a/mt0k a . mtz ” 60.954 60.954 96.607 ” ” 30 .0
2 . 4 ” $RCSB0k

r e f i n e $BASE/mt0k b/mt0k b . mtz ” 60.956 60.956 96.597 ” ” 30 .0
2 . 4 ” $RCSB0k
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Structure analysis scripts

This chapter lists the code used to compare structures determined from refinement.

It relies heavily on several Perl modules available from www.cpan.org, in particular

the Perl Data Language. The first two files listed are Perl modules, which are simply

dynamically loaded libraries of useful functions.

All of this code is self documented in the Perl POD format. If the script is

in the current path, typing perldoc <script> at the command line will print

documentation on the file.

This set of tools, and in particular the libraries, can be put together in many

ways to achieve many otherwise difficult goals. I have written dozens of scripts

based on these, more than space here will allow. However, these scripts are the

core of the analysis in Chapter 5 and should provide a clear example of how to

perform many other tasks. One such example is the final script in this appendix,

which generated many of the figures used in the text.

Note: In order to typeset the code in a reasonable fashion, some lines have

been split. This may result in errors, though in most cases it should not. Should

you copy this code verbatim from this manuscript, be aware that there may be

some difficulty in running it.

B.1 pdbtools.pm

This module contains many useful routines for reading, writing, and manipulating
Protein Data Bank formatted files. The code can be hard to follow, and requires
a good working knowledge of reference handling in Perl. Perl novices are advised
not to modify this code, especially the function vet_pdb.

#!/ usr / b in / p e r l −w

213



214

=pod DWARF Prote in St ruc tur e comparison u t i l i t i e s : pdbtoo l s
.pm

=head1 Overview

pdbtoo l s .pm i s a package for reading , wr i t ing , so r t ing , and
ve t t i ng PDB f i l e s .

I t a l s o has a number o f i n t e r f a c e f unc t i on s which help i t
dea l with PDL data

( aka ” p idd l e s ” or ” pdl s ” ) . These f unc t i on s are documented
below .

Marcus D. Co l l i n s Sept . 2004 , marcus@bigbro . biophys . c o r n e l l
. edu

Known odd i t i e s : read pdb does not read in water molecules ,
nor beta sh e e t s as secondary s t r u c tu r e

Known bugs : s o r t i n g w i l l not sort c o r r e c t l y ( i . e . by
r e s i due f i r s t ) i f a numeral precedes an atom

type . This i s almost never a problem , except when
a s s i gn i ng hydrogen atoms , where c e r t a i n programs

l i s t the H atoms as , e . g . , 1HE, 2HE, in s t ead o f HE1, HE2.
This makes sense , as i t i s p o s s i b l e to

have , e . g . CD1 and CD2. Then you want to be ab le to write

1HD1 and 1HD2.

The reason i s that the atom code i s <RESID><RESN><ATOMNAME
>, so i t can ’ t d i s t i n g u i s h

LEU,7 , 1HD1 and LEU,71 ,HD1.

=cut

package pdbtoo l s ;

use PDL;
use Exporter ;
@ISA = ( ’ Exporter ’ ) ;
@EXPORT = ( ’ read pdb ’ , ’ wr ite pdb ’ , ’ vet pdb ’ , ’

wr i t e new coords ’ , ’ w r i t e f i e l d ’ , ’ g e t c o o rd s ’ ) ;
@EXPORTOK = ( ’ read pdb ’ , ’ wr ite pdb ’ , ’ vet pdb ’ , ’

i n s e r t f i e l d ’ , ’ s e l e c t c h a i n ’ ,
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’ wr i te new coords ’ , ’ by atom ’ , ’
g e t v a l u e s a s p d l ’ , ’ g e t c o o rd s ’ , ’ w r i t e f i e l d ’ ) ;

use s t r i c t ;

=head1 Subrout ines

=head2 read pdb ( I<i nput f i l ename >)

read pdb takes one argument , which must be formatted
accord ing to the PDB ru l e s .

I t r e tu rns a hash r e f e r e n c e which I r e f e r to as a pdb
r e f e r e n c e . The keys o f

the hash %$pdb re f are the f o l l ow ing f i e l d names :

=over 4

=item

I<atom num>, I<atom type> the atom number and type ( e . g .
CG1) from the o r i g i n a l PDB f i l e

=item

I<res num>, I<r e s type> the r e s i due number and type

=item

I<cha in id> the chain i d e n t i f i e r

=item

I<x>, I<y>, I<z> the coo rd ina t e s o f the atom from the PDB
model .

=item

I<B>, I<occup> the B f a c t o r and occupancy

=item

I<so r t keys> a concatenat ion o f chaid id , r e s i due number
and atom type , t h i s i s used f o r s o r t i n g
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the record .

=item

I<second> s t o r e s the second s t ru c tu r e r eco rds . As o f 20
DEC 2004 , only h e l i c e s are a c tua l l y s to r ed .

Other r eco rds w i l l be s to r ed in the fu tur e . The h e l i x
i d e n t i f i e r ( e . g . H4) , the beg inning and ending

r e s i due numbers are recorded . E. g . C<$pdb ref−>{”second
”} [ 2 ] [ 1 ] > i s the beg inning r e s i due number

f o r the th i r d h e l i x l i s t e d in the o r i g i n a l pdb f i l e .

=back

With the except ion o f I<so r t keys> the va lue s o f %$pdb re f
are array r e f e r e n c e s ; %$pdb re f {” so r t k ey s ”}

i s a hash r e f e r e n c e . The a r rays conta in the va lue s o f each
f i e l d in the order they were read from the

f i l e . The va lue s o f %{$pdb ref−>{”so r t k ey s ”}} are
s equen t i a l numbers s t a r t i n g at 0 , r e co rd ing the

o r i g i n a l read order o f the l i n e s in the pdb f i l e . These
are used l a t e r in vet pdb f o r s o r t i n g purposes .

=head3 Note on what i s read from the f i l e .

As o f t h i s ver s ion , only l i n e s beg inning with ATOM are read
in . I t would be s t r a i gh t f o rwa rd to read in

HETATM reco rds in a s im i l a r f a sh i on . read pdb a l s o does
not read in chain i d e n t i f i e r s . This could

cause s e r i o u s problems with mul t ip l e chain p r o t e i n s . Be
ca r e f u l , or modify t h i s code and send your new

ve r s i on to me !

=cut

sub read pdb {
my ( $ f i l e ) = @ ;
my $debug = 0 ;

open STRUCT, ”< $ f i l e ” or d i e ” $ f i l e cannot be opened !\n
” ;

# Estab l i sh a r rays that w i l l be used in con s t ru c t i ng the
matr i ces and other s t u f f
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my (@x, @y, @z , @atom type , @res type , @chain id ,
@res num , @B, @atom num , @occ , @atonelet ) ;

my %so r t k ey s ;
my @cha in ids ; #This array w i l l conta in the chain

i d e n t i f i e r s ,

# The f o l l ow ing e n t r i e s are the beg inning o f an attempt
to keep more in fo rmat ion

# from the pdb record . We w i l l s t a r t with h e l i c e s .
# These w i l l be a c c e s s i b l e from the array $pdb ref−>{”

second ”} , whose value w i l l be
# the r e f e r e n c e to the array @secondary , which i t s e l f i s

an array o f r e f e r e n c e s to
# ar rays . E. g . to get h e l i x informat ion ,
#
# $pdb re f = read pdb ( $ f i l ename ) ;
# $pdb ref−>{”second ”} [ n ] [ 0 , 1 , 2 ] ;
#
# where n i s the number o f the secondary s t r u c tu r e

element ( s t a r t i n g from zero , read
# in order o f the pdb f i l e ) , and 0 ,1 ,2 correspond to the

element name ( e . g . H3) , the
# f i r s t r e s i due number o f the element , and the l a s t
number o f the element ( po s s i b l y more

# f o r B−sh e e t s ) .

my ( @secondary ) ;
#$debug = 1 ;
p r i n t ”Reading PDB f i l e now . . . \ n” i f $debug ;
my $ i = 0 ;

READPDB: whi l e (<STRUCT>) {
i f (/ˆHELIX\ s+\d+\s+H?(\d+)\ s\w{3}\ s [A−Z]?\ s+(\d+)\ s+\w
{3}\ s [A−Z]?\ s+(\d+)/) {

my $ident = ”H” . $1 ;
push @secondary , [ $ ident , $2 , $3 ] ;
p r i n t ”READ PDB: $ \nSecondary : $1 , $2 , $3\n” i f

$debug ;
#$debug = 0 ;

}

# at num at name res name cha in i d ?
res num coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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occupancy B
i f (/ˆATOM\ s+(\d+)\ s+(\w{1 ,4}) \ s+(\w{3})\ s (\w?) \ s+(\d+)\
s+(−?\d+.\d+)\ s+(−?\d+.\d+)\ s+(−?\d+.\d+)\ s+(\d+.\d\d) \ s
?\ s ?(\d+.\d\d) /) {

next READPDB i f ( ( $3 eq ’WAT’ ) | | ( $3 eq ’HOH’ ) ) ; # We
do not l i k e water !
my @line = s p l i t /\ s+/, $ ;
$ a t one l e t [ $ i ] = pop @line ;

$atom num [ $ i ] = $1 ;
$atom type [ $ i ] = $2 ;
$ r e s t ype [ $ i ] = $3 ;
$ cha in id [ $ i ] = $4 ;
$res num [ $ i ] = $5 ;
$x [ $ i ] = $6 ;
$y [ $ i ] = $7 ;
$z [ $ i ] = $8 ;
$occ [ $ i ] = $9 ;
$B [ $ i ] = $10 ;
$ s o r t k ey s {$4 . $5 . $2} = $ i ; #This w i l l s e rve as a

lookup tab l e f o r s o r t i n g and s e l e c t i o n r ou t i n e s .
$ i += 1 ;

#Put the chain i d e n t i f i e r s in a l i s t . . .

push @chain ids , $4 i f ( $4 && ! ( ( de f ined $ cha i n i d s
[ −1]) && ( $ cha i n i d s [−1] eq $4 ) ) ) ;
}

}
pr i n t ”READPDB: Chain i d e n t i f i e r s : @cha in ids\n ” ;
warn ”\nWARNING: PDB f i l e $ f i l e appears to be empty ! ! \ n\n
” i f $ i==0;

my $pdb hash re f = { ”atom num” => \@atom num ,
”atom type” => \@atom type ,
” r e s t ype ” => \@res type ,
” cha i n i d ” => \@chain id ,
” res num” => \@res num ,
”x” => \@x, ”y” => \@y,
”z” => \@z , ”B” => \@B, ”occup” => \

@occ ,
” s o r t k ey s ” => \%sor t keys , ” second ”

=> \@secondary ,
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” cha ins ” => \@chain ids , ” a t one l e t ”
=> \@atonelet } ;

c l o s e STRUCT;
b l e s s $pdb hash re f , ” pdbtoo l s ” ;
r eturn $pdb hash re f ;

}

=head2 write pdb ( I<pdb re f erence , o u t pu t f i l e >)

wr ite pdb wr i t e s a pdb format f i l e based on the s t r u c tu r e
de f ined in read pdb .

=cut

sub write pdb {
my ( $ s t r c r e f , $ pdb f i l e , $model ) = @ ;
p r i n t ”Writ ing PDB format f i l e : ${ pdb f i l e } . . . \ n ” ;

warn ”WARNING: write pdb r e qu i r e s a r e f e r e n c e to a
s t r u c tu r e ob j ec t ( hash ) : s e e pdbtoo l s .pm\n”

un l e s s ( r e f ( $ s t r c r e f ) eq ” pdbtoo l s ”) ;
i f ( $model ) {

open NEW, ”>> $pdb f i l e ” or d i e ”Cannot open output
pdb f i l e : $ pdb f i l e ” ;

p r i n t NEW ”REMARK\ tThis pdb f i l e was generated by the
DWARF u t i l i t i e s .\n ” ;

p r i n t NEW ”MODEL $model\n ” ;
} e l s e {

open NEW, ”> $pdb f i l e ” or d i e ”Cannot open output
pdb f i l e : $ pdb f i l e ” ;

p r i n t NEW ”REMARK\ tThis pdb f i l e was generated by the
DWARF u t i l i t i e s .\n ” ;
}
s e l e c t NEW;

p r i n t ”REMARK\ tThis pdb f i l e was generated by the DWARF
u t i l i t i e s .\n ” ;

my $num = 1 ;
f o r each ( s o r t by num va lue s %{$ s t r c r e f −>{”so r t k ey s

”}}) {
pr i n t ”ATOM” ;
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i f ( $ $ s t r c r e f {” atom type ”} [ $ ] =˜ /ˆ\d/) {
#pr i n t f (”%7d %−5s ” , $ $ s t r c r e f {”atom num”} [ $ ] ,

$ $ s t r c r e f {”atom type ”} [ $ ] ) ;
p r i n t f (”%7d %−5s ” ,$num , $ $ s t r c r e f {” atom type ”} [ $

] ) ;
$num++;

} e l s e {
#pr i n t f (”%7d %−4s ” , $ $ s t r c r e f {”atom num”} [ $ ] ,

$ $ s t r c r e f {”atom type ”} [ $ ] ) ;
p r i n t f (”%7d %−4s ” ,$num , $ $ s t r c r e f {” atom type ”} [

$ ] ) ;
$num++;

}
p r i n t f (”%3 s%6d” , $ $ s t r c r e f {” r e s t ype ”} [ $ ] ,

$ $ s t r c r e f {” res num ”} [ $ ] ) ;
p r i n t f (”%12.3 f %8.3 f %8.3 f ” , $ $ s t r c r e f {”x ”} [ $ ] ,

$ $ s t r c r e f {”y ”} [ $ ] , $ $ s t r c r e f {” z ”} [ $ ] ) ;
p r i n t f (”%6.2 f %6.2 f%8s ” , $ $ s t r c r e f {”occup ”} [ $ ] ,

$ $ s t r c r e f {”B”} [ $ ] , $ $ s t r c r e f {” a t one l e t ”} [ $ ] ) ;
p r i n t ”\n ” ;

}

pr i n t ”ENDMDL\n ” ;
s e l e c t STDOUT;
c l o s e NEW;
return 1 ;

}

=head2 i n s e r t f i e l d ( I<pdb re f erence , l a b e l s r e f e r e n c e ,
v a l u e s r r e f >)

i n s e r t f i e l d i s the mechanism by which to wr i t e in to an
e x i s t i n g pdb

r e f e r e n c e . In p r i n c i p l e i t could be used to generate a
blank r e f e r en c e ,

but t h i s i s probably i l l −advi sed . I t i s not exported .

I<l a b e l s r e f e r e n c e > i s a r e f e r e n c e to an array o f l ab e l s ,
which should match the l a b e l s

de f ined in read pdb .

I<va l u e s r r e f> i s a r e f e r e n c e to an array o f r e f e r en c e s ,
each o f which po in t s to an array
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o f va lue s cor responding to each l a b e l in @$ l abe l r e f e r en c e .

=cut

sub i n s e r t f i e l d {
my $debug = 0 ;
my ( $ s t r u c t u r e r e f , $ l a b e l s r e f , $ v a l u e s r r e f ) = @ ;
my @labe l s = @$ l a b e l s r e f ;
p r i n t ”This i s i n s e r t f i e l d . Labels are : @labe l s \n” i f
$debug ;

my @va l r e f s = @$va lue s r r e f ;

f o r each my $ l a b e l ( @labe l s ) {
my $v a l r e f = s h i f t @va l r e f s ;
p r i n t j o i n ” ” , @$va l re f , ”\n” i f $debug ;
@{ $ s t r u c t u r e r e f −>{$ l a b e l }} = @$va l r e f ; # @{pdb f i e l d
r e f e r e n c e } = @{ r e f to new va l s }

}
return $ s t r u c t u r e r e f ;

}

# write new coords i s what i s u sua l l y c a l l e d to i n t e r f a c e
to i n s e r t f i e l d

# I t expect s a dwarf s t r u c tu r e r e f e r e n c e ( s ee read pdb ) ,
and a 3xN pdl .

=head2 wr i te new coords (B<3xN pdl> I<coord inates ,
pdb re f erence >)

wr i te new coords i s an exported funct i on which uses
i n s e r t f i e l d to wr i t e

in to an e x i s t i n g pdb re f e r ence . The coo rd ina t e s must be a
3 rows x N columns

pdl .

=cut

sub wr i te new coords {
my ( $coords , $ s t r u c t u r e r e f ) = @ ;
my @x = $coords−>s l i c e ( ” : , 0 ” )−> l i s t ( ) ;
my @y = $coords−>s l i c e ( ” : , 1 ” )−> l i s t ( ) ;
my @z = $coords−>s l i c e ( ” : , 2 ” )−> l i s t ( ) ;
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my @coords r e f = (\@x,\@y,\@z) ;
my @labe l s = qw/x y z / ;
return &i n s e r t f i e l d ( $ s t r u c t u r e r e f ,\ @labels ,\

@coords r e f ) ;
}

=head2 w r i t e f i e l d (B<1xN pdl> I<data , f i e l d name ,
pdb re f erence >)

This expo r tab l e funct i on a l l ows the user to wr i t e in to any
one f i e l d ( e . g . occupancy ,

B fac to r , atom name) one at a time . I t i s mostly an
ex t e rna l wrapper f o r i n s e r t f i e l d

that a l l ows the user not to have to cons t ruc t r e f e r e n c e s
needed f o r i n s e r t f i e l d .

=cut

#Okay , you ’ ve decided to look under the hood , haven ’ t you?
Well , yes , t h i s one i s

#wierd . I t c r e a t e s a l o t o f seemingly unnecessary
r e f e r e n c e s . But t h i s i s f o r c ompa t i b i l i t y

#with i n s e r t f i e l d , which I decided long ago would be the
one and only path f o r wr i t ing in to a

#pdb r e f e r e n c e . That way i f the s t r u c tu r e o f a
pdb re f e r ence changes , I ’ l l only have to f i x i t

#there , l e a v i n g the user i n t e r f a c e a lone . v e t pdb w i l l be
enough work i f I have to change t h i n g s .

#i n s e r t p d b has the mu l t i p l e l e v e l s o f r e f e r en c e s to handle
the p o s s i b i l i t y o f w r i t i n g an

#a r b i t r a r y number o f f i e l d s a t once , as in wr i te new coords
.

sub w r i t e f i e l d {
my $debug = 0 ;
my ( $data , $ l abe l , $pdb re f ) = @ ;
print $data i f $debug ;
print ”This i s w r i t e f i e l d \n” i f $debug ;
my @labe l s ;
my @dataref ;
push @labels , $ l a b e l ;
my @data = $data−> l i s t ( ) ;
print ”Write f i e l d : @data\n” i f $debug ;
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push @dataref , \@data ;
return &i n s e r t f i e l d ( $pdb ref ,\ @labels , \@dataref ) ;

}

=head2 g e t v a l u e s a s p d l ( I<pdb re f erence , column name
1 , . . . , column name m>)

An i n t e r n a l f unc t i on which r e tu rns a s i n g l e mxN pdl
conta in ing each s p e c i f i e d column o f

data in a row ( the PDL i s row c en t r i c ) . Using t h i s
func t i on out s ide o f t h i s module

i s discouraged , as i t assumes a format for the
pdb re f e r ence . I t mainly wraps some

somewhat con fus ing r e f e r e n c e pass ing in to a conven ient
funct i on .

=cut

sub g e t v a l u e s a s p d l {
my ( $ s t r u c t u r e r e f , @column names ) = @ ;
my $pd l s t r i n g = ’ pdl [ ’ ; #This w i l l be what we f e ed

to pd l in an e va l s ta tement . . .
foreach my $column (@column names ) {

$pd l s t r i n g .= ” \ [\@\{\ $ s t r u c t u r e r e f −>\{\”$column
\”\}\}\ ] , ” ;

}
$pd l s t r i n g .= ’ ] ’ ;
return my $pdl = eval ( $ pd l s t r i n g ) ;

}

=head2 g e t co o rd s ( I<pdb re f erence >)

g e t c o o rd s i s an out s ide i n t e r f a c e to g e t v a l u e s a s p d l .
P lease use t h i s

unless you need something other than the coo rd ina t e s .

=cut

sub g e t co o rd s {
my $ s t r u c t u r e r e f = sh i f t @ ;
return & g e t v a l u e s a s p d l ( $ s t r u c t u r e r e f , ’ x ’ , ’ y ’ , ’ z ’ ) ;

}
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=head2 g e t h e l i c e s ( I<pdb re f erence >)

This rout ine i s s imple : i t r e tu rns an array o f s t r i ng s ,
u seab l e by vet pdb ,

to a id in the s e l e c t i o n o f h e l i c e s . The array can be
manipulated as nece s sa ry

to r ecove r whichever h e l i c e s you l i k e ; use the ”CA” f l a g in
vet pdb i f you

want only the backbone .

I n c i d en t a l l y , i f you c a l l i t in scalar context , i t w i l l
return a l l the s t r i n g s

concatenated toge the r as one . Just a warning . . .

=cut

sub g e t h e l i c e s {
my $ s t r u c t u r e r e f = sh i f t @ ;

my @vet s t r i ng s ;

foreach my $he l i x (@{ $ s t r u c t u r e r e f −>{” second”}}) {
i f ( $he l ix −>[0] =˜ /ˆH/ i ) {

push @vet s t r ing s , join ”−” , $he l ix −>[1] , $he l ix
−>[2];

}
}
wantarray ? return @vet s t r i ng s : return join ” ” ,

@ve t s t r i ng s ;
}

=head2 vet pdb ( I<pdb ref1 , pdb ref2 , [ th ing s to keep ]>)

vet pdb i s the most compl icated part o f t h i s e n t i r e
d i s t r i b u t i o n , and i s at

the co rne r s tone o f i t s a b i l i t y to compare p o t en t i a l l y very
d i f f e r e n t molecu les .

B<Syntax:> vet pdb expect s two pdb r e f e r e n c e s as defined in
read pdb . Af ter t h i s

i t expect s an array o f s t r i n g s o f one o f two formats :
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=over 4

=item

I<r e s i due ranges> s p e c i f i e d as ( f i r s t r e s i due number )−( last

r e s i due number ) . vet pdb w i l l keep
a l l r e s i d u e s from the f i r s t to last r e s i due s p e c i f i e d .

=item

I<atom types> s p e c i f i e d by t h e i r r e s p e c t i v e PDB codes . The
comparison to what ’ s in the ac tua l

s t r u c tu r e i s done with regex , but oddly something l i k e C.∗
won ’ t work .

=back

I f nothing i s s p e c i f i e d , vet pdb w i l l return a l l atoms that
match in both s t r u c t u r e s . You may

sp e c i f y as many r e s t r i c t i o n s as you l i k e .

vet pdb w i l l then return a new pdb r e f e r e n c e which conta in s
only the s p e c i f i e d atoms .

=head3 Algorithm

In an e f f o r t to head o f f unwary attempts at modifying t h i s
beast , some d e s c r i p t i o n o f the a lgor i thm

i s in order . Here i s how i t works :

The pdb re f s are held i n t e r n a l l y in s r e f 1 and s r e f 2 ,
while the array to ” th ing s to keep ” i s c a l l e d

@keep .

=cut

sub vet pdb {
my ( $ s r e f 1 , $ s r e f 2 , @keep ) = @ ;

my @res nums ;
my @atom types ;

my $new re f1 ;
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my $new re f2 ;
my @keys to p ick ;
my ( $ r e s pa t t e rn , $atom pattern ) ;
my @chains1 ;
my @chains2 ;

# Check t h a t the chain i d e n t i f i e r l i s t s are the same ; i f
not don ’ t e x i t

# but warn user

@chains1 = @{ $ s r e f 1 −>{” cha ins ” }} ;
@chains2 = @{ $ s r e f 2 −>{” cha ins ” }} ;
print join ” ” , ”Chains f o r prot 1 ( in order read ) : ” ,

@chains1 , ”\n” ;
print join ” ” , ”Chains f o r prot 2 ( in order read ) : ” ,

@chains2 , ”\n” ;
i f ( @chains1 != @chains2 ) {

print STDERR ”WARNING\ t \ t \tWARNING\ t \ t \tWARNING\nNumber
o f chain IDs in your pdb f i l e s do not match !\n” ;

print STDERR join ” ” , ” 1 : ” , scalar @chains1 , ”\ t2 : ” ,
scalar @chains2 , ”\n” ;

print STDERR ”Program may produce er roneous r e s u l t s or
crash !\nWARNING\ t \ t \tWARNING\ t\ t \tWARNING\n\n\n” ;

} else {
foreach ( 0 . . @chains1−1) {

i f ( $cha ins1 [ $ ] ne $cha ins2 [ $ ] ) {
print STDERR ”WARNING: The #$ chain i d e n t i f i e r s o f

your pdb f i l e s do not match !\n” ;
print STDERR ”WARNING: Program may crash or produce

er roneous r e s u l t s !\n” ;
}

}
}

#=pod
#
#Fi r s t two arrays are cons truc ted , one l i s t i n g every

re s i due to be kept , and one which
#l i s t s each atom type to be kep t . This i s done with

r e gu l a r expre s s i on matching : i f
#something matches the pa t t e rn /(\d+)−(\d+)/ i t g e t s used

f o r re s i due numbers , o the rw i s e
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#i t i s pushed onto the atom s tack .
#
#=cut

foreach (@keep ) {
i f (/ (\d+)−(\d+)/) {

push @res nums , $1 . . $2 ;
} e l s i f (/ (\d+)/) {

push @res nums , $1 ;
} else { #i f (/ˆ [CNOS]\w∗$

/) {
push @atom types , $ ;

}
}

=pod

Then vet pdb con s t ru c t s an array @keys to p ick : the atom
i d e n t i f i e r codes that w i l l be

matched to the ” so r t k ey s ” desc r ibed above . I f no r e s i d u e s
or atom types are s p e c i f i e d ,

@keys to p ick i s s e t to C<keys %{$ s r e f 1 −>{” so r t k ey s ”}}>.
Otherwise , a regex

s t r i n g i s generated for the r e s i d u e s and for the atom types
, and matched aga in s t the

cor responding f i e l d s in ( pdb re f ) $ s r e f 1 . I f the array i s
undef ined , then vet pdb

uses ” .∗ ” as the regex . ( I t i s thus somewhat redundant to
check whether they both defined

e a r l i e r , but i t speeds th ing s up in c e r t a i n s i t ua t i on s , and
i s more robust ) .

The code ”SC” w i l l o v e r r i d e a l l o ther atom s e l e c t i o n s and
stands for a pre−defined s e t o f s i d e chain atoms .

”MC” w i l l r ep r e s en t main chain atoms , and takes precedence
over SC .

The code SR means that any code that f o l l ow s i s a complete
atom i d e n t i f i e r . This code takes precedence

over a l l o the r s .

=cut
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i f ( ! @atom types && ! @res nums ) {
@keys to p ick = keys %{$ s r e f 1 −>{” so r t k ey s ” }} ;

} e l s i f ( ( join ” ” , @atom types ) =˜ m/SR/) {
#pr in t STDERR ”Entering s p e c i f i c atom s e l e c t i o n mode\n

”;
#pr i n t STDERR jo in ” ” , @atom types , ”\n”;
@keys to p ick = @atom types ;

} else {
( @res nums ) ? ( $ r e s pa t t e rn = ” ( ” . join ( ’ ) | ( ’ ,

@res nums ) . ” ) ” )
: ( $ r e s pa t t e rn = ” .∗ ” ) ;

( @atom types ) ? ( $atom pattern = ” ( ” . join ( ’ | ’ ,
@atom types ) . ” ) ” )

: ( $atom pattern = ” .∗ ” ) ;

i f ( $atom pattern =˜ m/MC/) {
$atom pattern = ” (C) | (CA) | (N) | (O) ” ;

}
i f ( $atom pattern =˜ m/SC/) {

$atom pattern = ” (C[B−Z]\\d?) | (O.+) | (N.+) | ( S .∗ ) ” ;
}

my $ i = 0 ;

foreach (keys %{$ s r e f 1 −>{” so r t k ey s ”}}) {
i f ( ( $ s r e f 1 −>{”res num”}−>[ $ s r e f 1 −>{” so r t k ey s ”

}−>{” $ ” } ] =˜ m/ˆ( $ r e s pa t t e rn ) $ /) &&
( $ s r e f 1 −>{”atom type”}−>[ $ s r e f 1 −>{” so r t k ey s ”

}−>{” $ ” } ] =˜ m/ˆ( $atom pattern ) $ /) ) {
#pr in t ”Match : $ \n”;
$key s t o p i ck [ $ i ] = $ ;
$ i += 1 ;

}
}

}

# This r e t r i e v e s r e f e r en c e s to the ” s o r t k e y s ” hash o f
the pdb records wr i t t e n

# by read pdb ( above ) . The keys to %s o r t k e y s are a
concatenat ion o f the re s i due



229

# number and the atom code f o r every ATOM record in the
o r i g i n a l pdb f i l e .

# The ac tua l va lue i s the atom s e r i a l number .
my $key r e f 1 = $ s r e f 1 −>{” so r t k ey s ” } ;
my $key r e f 2 = $ s r e f 2 −>{” so r t k ey s ” } ;

=pod

Next comes the r e a l meat o f the rout ine . For each C<
@keys to pick >, vet pdb determines whether

that key exists in the second s t ru c tu r e (by checking C<
defined $ s r e f 2 −>{” so r t k ey s ”}−>{” $ a t om id en t i f i e r ”}>.)

I f i t i s defined , then both s t r u c t u r e s have that atom and
i t has passed the ve t t i ng r e s t r i c t i o n s

s p e c i f i e d by the user . Then the rout ine C<& copy pdb l ine
( )> i s c a l l e d to write a l i n e o f a new pdb re f .

=cut

# For some reason , Emacs doesn ’ t l i k e pod comments . . . I
can ’ t t e l l what i s wrong ,

# but the code works f i n e .

my $ i = 0 ;
#pr in t STDERR jo in ” ” , @keys to p ick ,”\n”;
foreach my $ a t om id en t i f i e r ( sort by atom @keys to p ick )

{
i f (defined $$key r e f 2 {” $ a t om id en t i f i e r ” }) {

my $index1 = $ s r e f 1 −>{” so r t k ey s ”}−>{”
$ a t om id en t i f i e r ” } ;

my $index2 = $ s r e f 2 −>{” so r t k ey s ”}−>{”
$ a t om id en t i f i e r ” } ;

$new re f1 = & copy pdb l ine ( $ s r e f 1 , $new ref1 , $index1
, $i , $ a t om i d en t i f i e r ) ;

$new re f2 = & copy pdb l ine ( $ s r e f 2 , $new ref2 , $index2
, $i , $ a t om i d en t i f i e r ) ;

$ i += 1 ;
}

}
#my @CH = qw/A/;
#$new ref1−>{”cha ins ”} = \@CH;
#$new ref2−>{”cha ins ”} = \@CH;
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bless $new ref1 , ” pdbtoo l s ” ;
bless $new ref2 , ” pdbtoo l s ” ;
return ( $new ref1 , $new re f2 ) ;

}

=head2 s e l e c t c h a i n ( I<pdb ref , cha i n s t r i ng >)

Returns ( as a pdb re f ) those atoms in I<pdb ref> whose
chain i d e n t i f i e r s match those in

I<cha i n s t r i ng >. I t i s assumed that a chain i d e n t i f i e r
i s only one l e t t e r ; the

user may sp e c i f y as many as they l i k e .

=cut

sub s e l e c t c h a i n {
my ( $pdb ref , $chain ) = @ ;
my $ i = 0 ;
my $new pdb ref ; # a new pdb r e f e r en c e to be s t r u c tu r e d

as de f ’ d in read pdb .
foreach my $ a t om id en t i f i e r (keys %{$pdb ref−>{”

so r t k ey s ”}}) {
i f ( $ a t om id en t i f i e r =˜ m/ˆ [ $chain ] / ) {

my $index = $pdb ref−>{” so r t k ey s ”}−>{”
$ a t om id en t i f i e r ” } ;

$new pdb ref = & copy pdb l ine ( $pdb ref ,
$new pdb ref , $index , $i , $ a t om i d en t i f i e r ) ;

$ i += 1 ;
}

}
return $new pdb ref ;

}

=head2 I<i n t e rna l> copy pdb l ine

This i s the rout ine that a c tua l l y cop i e s l i n e s o f
pdb r e f e r en c e s a c r o s s . See

code for s i gna tu r e and algor i thm . I t i s f a i r l y simple , but
should not be used

out s ide o f pdbtoo l s .pm.
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copy pdb l ine a l s o ac t s as a de f a c t o cons t ruc to r o f
pdb re f s , a lthough

i t cannot do so without an e x i s t i n g pdb re f .

=cut

sub copy pdb l ine {
my ( $o ld pdb re f , $new pdb ref , $o ld l ine num ,

$new line num , $atom id ) = @ ;
#pr in t @ ,”\n”;
foreach my $pdb type (keys %$o ld pdb r e f ) {

i f ( $pdb type eq ” cha ins ” ) {
$new pdb ref−>{” cha ins ”} = $o ld pdb re f−>{” cha ins ”

} ;
} e l s i f ( ref ( $o ld pdb re f−>{”$pdb type ” }) eq ”ARRAY” )

{
$new pdb ref−>{”$pdb type ”}−>[$new line num ] =

$o ld pdb re f−>{”$pdb type ”}−>[ $o ld l ine num ] ;
} e l s i f ( $pdb type eq ” so r t k ey s ” ) {

$new pdb ref−>{” so r t k ey s ”}−>{”$atom id ”} =
$new line num ;

}
}
return $new pdb ref ;

}

=head1 Aux i l l i a r y f unc t i on s

mass tab le i s u s e f u l in c a l c u l a t i n g va r i ous weight ings , and
c en t e r i ng

molecu les .

=cut

sub mass tab le {
my ( $e lements ) = @ ;
i f ( ref $elements eq ” pdbtoo l s ” ) {

$elements = $elements−>{”atom type” } ;
}
print ” $elements \n” ;
my %mass hash = ( ”C” => 12 .011 , ”N” =>14.007 , ”O” =>

15 .999 , ”S” => 32 .064 , ”H” => 1 .008 ) ;
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my $ i =0;
my @masses ;
foreach my $atom ( @$elements ) {

$atom =˜ m/ˆ(\w) (\w∗) $ / ;
$masses [ $ i ] = $mass hash{”$1” } ;
$ i += 1 ;
warn ”Unknown atom type : $atom\n” unless ( $atom =˜

m/ˆ [CNOSH] / ) ;
}
return \@masses ;

}

#
# by atom i s a s o r t i n g rou t ine used by ve t pdb . See the

Per l b u i l t i n ” s o r t ” f o r
# d e t a i l s o f how s o r t i n g rou t i n e s are to be s t r u c tu r e d . . .
#

=head1 Sor t ing a lgor i thms

There are two i n t e r n a l s o r t i n g r ou t i n e s . B<by num> s o r t s
e x p l i c i t l y

by numer ica l comparison . B<by atom> i s more complicated ,
and a l l ows

for s o r t i n g the so r t k ey s o f a pdb r e f e r e n c e f i r s t by
r e s i due number

and then l a t e r by atom type . This prevents a s c i i b e t i c a l
s o r t i n g in

the output pdb f i l e .

=cut

sub by atom {
$a =˜ m/ˆ(\D) ?(\d+)(\w+)$ / ;
my $ r e s a = $2 ;
my $atom a = $3 ;
my $cha in a = ( $1 or ” ” ) ;

$b =˜ m/ˆ(\D) ?(\d+)(\w+)$ / ;
my $ r e s b = $2 ;
my $atom b = $3 ;



233

my $chain b = ( $1 or ” ” ) ;

return ( ( $cha in a cmp $chain b ) or ( $ r e s a <=> $ r e s b )
or ( $atom a cmp $atom b ) ) ;

}

sub by num {
$a <=> $b ;

}
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B.2 linear.pm

This module contains several useful linear algebra routines which are not built into
the PDL.

#!/ usr / b in / p e r l −w

########################################################
#

=head1 l i n e a r .pm overview

l i n e a r .pm i s a Per l language module that has va r i ous
subrout ine s and sub−subrout ine s for per forming l i n e a r
t rans f o rmat i ons minimizing the rms m i s f i t between two
s e t s o f po in t s . I t was wr i t t en o r i g i n a l l y for mapping
pro t e in s t r u c t u r e s onto each other .

=head1 Dependencies

Uses the PDL modules .

=head1 General notes

I t may at f i r s t confuse the user how one should use many
o f the se f unc t i on s . For instance , how should they
generate the 3xN pdls used by most ( i f not a l l ) o f the se
f unc t i on s . The answer i s that you shouldn ’ t ; you should
l e t the r ou t i n e s in pdbtoo l s .pm do t h i s f o r you by read ing
in pdb f i l e s and r e t r i e v i n g coo rd ina t e s from the r e s u l t i n g
s t r u c t u r e s . See pdbtoo l s . html f o r more informat ion , or

type
I<per ldoc pdbtoo l s .pm> at the command l i n e in the d i r e c t o r y
conta in ing these modules .

=head2 Oddit i e s

Due to the matrix implementation in the PDL, which i s row
cen t r i c ,

the index ing may seem a b i t odd at f i r s t , should you dig
in to

the code . ( Note that we do not use PDL : : Matrix here ) . The
f i r s t index i s always a column index , and the second index

i s
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always a row .

=cut

#
# Functions ( a l l subrout ine s in t h i s r e v i s i o n .
#
# rms : c a l c u l a t e s a weighted rms between two s e t s o f three−

vector s ,
# re turns a s c a l a r number
#
# weighted outer product : takes two s e t s o f 3−vector s ,

c a l c u l a t e s
# the outer product o f each pa i r ( i t assumes they are

so r t ed proper ly ) ,
# and c a l c u l a t e s a weighted sum o f those , r e tu rn ing a 3x3

matrix
# r e f e r e n c e ( useab l e by Math : : MatrixReal
#
# we ighted inner product : p r e t ty much the same , r e tu rns a 1

x1
# matrix r e f e r e n c e .
#
# sqrtm takes a matrix squa r e roo t . I t assumes a 3x3 matrix

, though
# th i s could e a s i l y be g ene r a l i z ed . Returns a r e f e r e n c e to

a 3x3 matrix .
#
# move : takes a s t r u c tu r e (3− ve c t o r s ) and a length 3 array
# $x , $y , $z ; t r a n s l a t e s the s t r u c tu r e by the va lue s $x , $y

, $z .
# Assumes that the input s t r u c tu r e ve c t o r s are l i s t e d as x ,

y , z
# t r i p l e s .
#
# gen e r a l l i n e a r , f i n d r o t a t i o n : the se two subrout ine s take
# r e f e r e n c e s to two matr i ces 3 co l x n rows , and a 1xn

weight ing
# matrix . They return r e f e r e n c e s to 3x3 t rans f o rmat i on

matr i ces .
#
# f i n d t r a n s l a t i o n : takes the same input arguments as
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# f i n d r o t a t i o n . Returns a r e f e r e n c e to a t r an s l a t ed
s t r u c tu r e

# (3xn matrix ) and an array ( $dx , $dy , $dz ) conta in ing the
# t r a n s l a t i o n .
#
# sca l e : f i n d s a s c a l a r ( not 1x1 matrix ) va lue s c a l e f a c t o r

between
# two s t r u c t u r e s .
#
# transform : (Added 7 Sept 2004 , MDC) Perform a genera l

l i n e a r
# trans f o rmat i on on the input molecule . Modif ied 29 Sept

to a l low
# f o r t r a n s l a t i o n s be f o r e and a f t e r the l i n e a r transform .

package l i n e a r ;

use PDL;
use Exporter ;
@ISA = ( ’ Exporter ’ ) ;
@EXPORT = ( ’ rms ’ , ’move ’ , ’ g e n e r a l l i n e a r ’ , ’ f i n d r o t a t i o n ’ , ’

f i n d t r a n s l a t i o n ’ , ’ s c a l e ’ , ’ t ransform ’ ) ;
@EXPORTOK = ( ’ we ight out prod ’ , ’ we ight inn prod ’ , ’ sqrtm ’ , ’

rms ’ , ’move ’ ,
’ g e n e r a l l i n e a r ’ , ’ f i n d r o t a t i o n ’ , ’

f i n d t r a n s l a t i o n ’ , ’ s c a l e ’ ,
’ t ransform ’ , ’ d i f f 1 d ’ ) ;

use s t r i c t ;

=head1 General mathematical r ou t i n e s

=head2 rms ( I<(3xN pdl ) coords1 , (3xN pdl ) coords2 , (1xN
pdl ) $weights>)

Returns the weighted root−mean−square d i f f e r e n c e between
two s e t s o f coo rd ina t e s .

=cut

sub rms {
my ( $vector s1 , $vector s2 , $weights ) = @ ;
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my $ d i f f s = (& d i f f 1 d ( $vector s1 , $vec to r s2 ) ) ;
r e turn wantarray ? $d i f f s −> l i s t ( ) : s q r t (sum( $weights ∗(

$ d i f f s ∗∗2) ) /sum( $weights ) ) ;

}

=head2 d i f f 1 d ( I<(3xN pdl ) coords1 , (3xN pdl ) coords2>)

Returns a 1xN pdl o f the l eng ths between atoms in two s e t s
o f coo rd ina t e s .

=cut

sub d i f f 1 d {
my ( $coords in , $ coo rds tg ) = @ ;

# Ca l cu la t e d i f f e r e n c e s between the two s t r u c t u r e s
my $ d i f f 3 d = $coo rd s i n − $coo rds tg ;
my $ d i f f 1 d = ( ( $d i f f 3 d−>s l i c e ( ’ : , 0 ’ ) ) ∗∗2

+ ( $d i f f 3 d−>s l i c e ( ’ : , 1 ’ ) ) ∗∗2
+ ( $d i f f 3 d−>s l i c e ( ’ : , 2 ’ ) ) ∗∗2) ∗∗(1/2) ;

r eturn $ d i f f 1 d ;

}

=head2 weight out prod ( I<(3xN pdl ) coords1 , (3xN pdl )
coords2 >, (1xN pdl ) $weights>)

Returns the weighted sum o f outer products o f pa i r s o f 3−
ve c t o r s as a 3x3 pdl .

=cut

# Curiously , i t ’ s f a s t e r to do i t in l oops than with the
# matrix mu l t i p l i c a t i o n rou t i n e s . & . . . ( x , y ,w) re turns
# \Sigma a w a x a ˆT y a ( i f you read TeX) .

sub weight out prod {
my ( $vector s1 , $vector s2 , $weights ) = @ ;
my $atoms = $vector s1−>getdim (0 ) ;
my $wop = 0 ;



238

# Note : PLD: : s l i c e re turns a ROW vec to r i f you use the
s l i c e (”( $ i ) ,0”) syntax

# ra the r than s l i c e (” $ i , 0” ) even i f the s l i c e i s in
p r i n c i p l e a column . . .

for (my $ i =0; $i<$atoms ; $ i++) {
my $temp = ( $vector s1−>s l i c e ( ” ( $ i ) , : ” )−>t ranspose ( )

x $vector s2−>s l i c e ( ” ( $ i ) , : ” ) ) ∗ $weights−>s l i c e
( ” ( $ i ) , ( 0 ) ” ) ;

$wop += $temp ;
}

return $wop∗(1/sum( $weights ) ) ;
#Normalized , $vec to r s2 ( column ve c t o r s ) X $vec to r s1 (

row ve c t o r s )

}

=head2 weight inn prod ( I<(3xN pdl ) coords1 , (3xN pdl )
coords2 >, (1xN pdl ) $weights>)

Returns the weighted sum o f inner products o f pa i r s o f 3−
ve c t o r s as a 1x1 pdl .

=cut
# And then , a we igh ted INNER product ( aka dot product ,

p ro j e c t i on , e t c . . . )

sub weight inn prod {
my ( $vector s1 , $vector s2 , $weights ) = @ ;
my $atoms = $vector s1−>getdim (0 ) ;
my $wip = 0 ;

for my $ i ( 0 . . $atoms−1) {
$wip += ( $vector s1−>s l i c e ( ” ( $ i ) , : ” ) x $vector s2−>

s l i c e ( ” ( $ i ) , : ” )−>t ranspose ( ) )∗$weights−>s l i c e ( ” (
$ i ) , ( 0 ) ” ) ;

}
return $wip ∗(1/sum( $weights ) ) ;

#Normalized , $vec to r s2 ( column ve c t o r s ) X $vec to r s1 (
row ve c t o r s )

}
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# What f o l l o w s i s how we take square roo t s o f matr ices .
# This i s how we do th i n g s downtown , a f t e r we k i c ked
# Matlab in the sh in s . I f A has e igenva luesD ( organ i zed
# in a d iagona l matrix ) and e i g en v e c t o r s S ,
# then Aˆ1/2 = S∗Dˆ1/2∗S ’

=head2 sqrtm ( I<(NxN pdl ) matrix>)

Matrix square root . See code for algor i thm .

=cut

sub sqrtm {
my ( $matrix ) = @ ;
my ( $ e i g vec s , $ e i g v a l s ) = $matrix−>e i g en s ( ) ;

# −>s t r e t c h e r () puts a vec to r on a d iagona l o f the
appropr i a t e s i z e .

return ( $ e i g v e c s x s t r e t c h e r ( sqrt ( $ e i g v a l s ) ) x
$e i g vec s−>t ranspose ( ) ) ;

}

=head1 Applying l i n e a r t rans f o rmat i on and t r a n s l a t i o n s .

=head2 transform ( I<(MxN pdl ) coord inates , (LxM pdl ) matrix
, (1xM pdl ) t r a n s l a t i o n 1 , (1xM) t r a n s l a t i o n 2>)

Performs an a rb i t r a r y matrix t rans f o rmat i on on the
coo rd ina t e s . I t w i l l f unc t i on with matr i ces

o f a rb i t r a r y s i z e , but in t h i s d i s t r i b u t i o n g ene r a l l y L=M
=3. Trans l a t i on 1 i s app l i ed be f o r e the

matrix t rans fo rmat ion , and t r a n s l a t i o n 2 i s app l i ed
a f t e rwords .

Returns an LxN pdl .

=cut

# The coord ina te s are kep t in a pd l where the matrix i s 3 x
N ( t ha t i s , 3 rows . . . )

sub transform {
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my ( $coords , $ t rans fo rmat ion , $move1 , $move2 ) = @ ; #
These must be PDL re f e r en c e s ( aka p idd l e s , p d l s ) .

my $c1 = $coords ;
$c1 = &move( $c1 , $move1 ) i f (defined $move1 ) ;
my $c2 = $trans fo rmat ion x $c1 ;
$c2 = &move( $c2 , $move2 ) i f (defined $move2 ) ;
return $c2 ;

}

#
# move does j u s t t h a t : move $molecule1 by $x , $y , $z .
# I t i s used in s e v e r a l p laces , so i t made sense
# to make i t a sub rou t ine .
#

=head2 move ( I<(MxN pdl ) coord inates , (1xM pdl ) t r an s l a t i on
>)

Returns an MxN pdl s e t o f coo rd ina t e s t r an s l a t ed by I<
t r an s l a t i on >. Here M=3

for p r a c t i c a l purposes , but the a lgor i thm i s not l im i t ed to
any value o f M.

=cut

sub move {
my ( $molecule1 , $ t rans ) = @ ;
return $molecule1 = $molecule1 + $trans−>t ranspose ( ) x

ones ( $molecule1−>getdim (0 ) ) ;
}

####################################################
#
# Below are the a c tua l f un c t i on s t h a t f i n d the
# trans fo rma t i ons
#
###################################################

=head1 Finding rms minimum l i n e a r t rans f o rmat i ons between
two s e t s o f coo rd ina t e s



241

=head2 g e n e r a l l i n e a r ( I<(3xN pdl ) coords1 , (3xN pdl )
coords2 , (1xN pdl ) $weights>)

Returns a 3x3 pdl g ene ra l l i n e a r t rans f o rmat i on that
minimizes the weighted rms d i f f e r e n c e between

the ( transformed ) input s t r u c tu r e and the t a r g e t s t r u c tu r e .
In p r i n c i p l e t h i s i s a

convo lut ion o f ro ta t i on , shear ing , and s c a l i n g . I t i s
t h e r e f o r e somewhat dangerous

to use , for i n s tance i f we were l ook ing for shea r ing
e f f e c t s in the ac tua l molecule .

I f that i s the case , you are be t t e r to use the r o t a t i on and
s c a l i n g f unc t i on s noted

below in s e r i e s .

=cut

sub g e n e r a l l i n e a r {
# Note t h a t x = $ s t r u c t 1 and y = $ s t r u c t 2 are

r e f e r en c e s to matr ices genera ted
# in &ge t da t a . The form of the transform i s :
# Rij = (\ Sigma a x a ˆ i y a ˆ j )∗ inv (\ Sigma a x a ˆ i x a ˆ j

) , i i s the column index ,
# j i s the row index . I hope I have t h a t r i g h t ! I f

not , i t ’ s j u s t
# a t r a n s p o s i t i o n to f i x i t !
my ( $st ruct , $ target , $weight ) = @ ;

return &weight out prod ( $target , $ st ruct , $weight ) x (&
weight out prod ( $st ruct , $ st ruct , $weight )−>inv ({” s ”})
) ;

}

# I s o t r o p i c s c a l i n g . . .

=head2 s c a l e ( I<(3xN pdl ) coords1 , (3xN pdl ) coords2 , (1xN
pdl ) $weights>)

Returns a 1x1 pdl s c a l e f a c t o r minimizing the weighted rms
m i s f i t between the two s e t s

o f coo rd ina t e s .

=cut
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sub s c a l e {
my ( $st ruct , $ target , $weight ) = @ ;
return &weight inn prod ( $st ruct , $ target , $weight ) x (&

weight inn prod ( $st ruct , $ st ruct , $weight )−>inv ({ ” s ”
}) ) ;

}

# Rotat ion
=head2 f i n d r o t a t i o n ( I<(3xN pdl ) coords1 , (3xN pdl )

coords2 , (1xN pdl ) $weights>)

Returns the 3x3 ant isymmetr ic r o t a t i on matrix minimizing
the weighted rms m i s f i t

betwen the two s e t s o f coo rd ina t e s .

=cut

sub f i n d r o t a t i o n {
# Notat ion : $x ty r e f e r s to \ vec x transposed t imes \ vec

y , and so on .
my ( $st ruct , $ target , $weight ) = @ ;
my $ytx = (&weight out prod ( $target , $ st ruct , $weight ) ) ;
my $ r o t a t i on = &sqrtm ( $ytx x $ytx−>t ranspose ( ) ) x ( $ytx

−>t ranspose ( )−>inv ({ ” s ”}) ) ;
return ( $ r o t a t i on ) ;

}

# Trans lat ion , now in PDL!

=head2 f i n d t r a n s l a t i o n ( I<(3xN pdl ) coords1 , (3xN pdl )
coords2 , (1xN pdl ) $weights>)

Returns the 3x1 pdl t r a n s l a t i o n vec to r minimizing the
weighted rms d i f f e r e n c e

between the two s e t s o f coo rd ina t e s . E . g . i s the weights
are masses o f atoms ,

t h i s w i l l return the d i s t ance between t h e i r c en t e r s o f mass
.

=cut

sub f i n d t r a n s l a t i o n {
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my ( $st ruct , $ target , $weight ) = @ ;
my $ d i f f = $ta rge t − $ s t r u c t ;

my $sum w = sum( $weight ) ;
my $trans = pdl ( sum( $weight∗ $d i f f−>s l i c e ( ’ : , ( 0 ) ’ ) ) /

$sum w , # X
sum( $weight∗ $d i f f−>s l i c e ( ’ : , ( 1 ) ’ ) ) /

$sum w , # Y
sum( $weight∗ $d i f f−>s l i c e ( ’ : , ( 2 ) ’ ) ) /

$sum w ) ; # Z

# pr in t ” $ t rans \n”;
return $trans ;

}
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B.3 superpose

This script aligns two protein structures in PDB format, subject to various options
and constraints. Its use of vet_pdb allows it to compare structures which may have
potentially very different sequences. It determines the transformations (usually a
rotation plus a translation) based on a user-specified subset of the structures, but
applies the transform to all atoms in the original PDB files.

#!/ usr / b in / p e r l

=head1 SUPERPOSE Overview

SUPERPOSE i s a Per l s c r i p t whose job i t i s to transform one
s e t o f p ro t e in s t r u c tu r e in such as way as to minimize the

rms
m i s f i t between those transformed coo rd ina t e s and a t a r g e t
pro t e in s t r u c tu r e .

The procedure i s

=over 4

=item

Read in and ” vet ” the two pdb f i l e s us ing r ou t i n e s from I<
pdbtoo l s .pm>

=item

Move both s e t s o f coo rd ina t e s so that t h e i r c en t e r s o f mass
are at the

o r i g i n .

=item

Ca l cu la t e the requested t rans f o rmat i on types ( s ee opt i ons
below ) .

=item

Move both molecu les back to the t a r g e t molecule ’ s c ent e r o f
mass .

=item
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Write a new se t o f transformed coo rd ina t e s to a user
s p e c i f i e d f i l e .

=back

More d e t a i l s may be found below .

Marcus D. Co l l i n s Sept . 2004 marcus@bigbro . biophys . c o r n e l l
. edu

=head2 Dependencies

superpose r e qu i r e s a ” header ” f i l e c a l l e d dwar f req .pm See
dwar f req . html

f o r more in fo rmat ion .

=head2 Output

superpose appends a l og f i l e ” a l i g n . l og ” conta in ing a
datestamp , in fo rmat ion

about how superpose was ca l l ed , some d i a gno s t i c informat ion
, the t rans f o rmat i ons

found , and the t r a n s l a t i o n s from the cent e r o f mass o f the
two molecu les to the

o r i g i n . (That i s , the cent e r o f mass in the o r i g i n a l
coo rd ina t e s ) .

=head2 Odd i t i t e s

Currently , superpose runs with no e r r o r messages i f you
send i t something r e a l l y odd ( e . g .

you do not s p e c i f y any pdb f i l e s to use ) . This may or may
not ever get f i x ed . . .

Due to the matrix implementation in the PDL, which i s row
cen t r i c , the index ing may seem

a b i t odd at f i r s t , should you dig in to the code . ( Note
that we do not use PDL : : Matrix

here ) . The f i r s t index i s always a column index , and the
second index i s always a row .

=head1 Usage
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superpose −1I<input pdb> −2I<t a r g e t pdb> [−TI<transform
f l a g 1>, −TI<transform f l a g 2>, . . . ] [−WI<m or b>]

[−vI<ve t t i ng f l a g 1>, −vI<ve t t i ng f l a g 2>, . . . ]
[−PI<output pdb>] [−dI<f i l ename >]

A l l command l i n e f l a g s are opt iona l , but be warned that the
output may not be meaningful f o r a l l

p o s s i b l e combinat ions . Think c a r e f u l l y about what you ’ re
doing .

I f two pdb f i l e s are loaded su c c e s s f u l l y , superpose w i l l
move the input s t r u c tu r e ’ s COM to the

t a r g e t s t r u c tu r e ’ s COM, and output the t r a n s l a t i o n s to the
log f i l e superpose . log .

Further opt i ons are s p e c i f i e d below

=head2 Linear t rans f o rmat i ons

=head3 General notes
Transformat ions are performed in the order s p e c i f i e d on the

command l i n e , e . g .

superpose . . . −Tr −Tc

Wil l f i r s t c a l c u l a t e a r o t a t i on to minimize the d i f f e r e n c e s
between the two molecules ,

then c a l c u l a t e an o v e r a l l i s o t r o p i c s c a l e f a c t o r . The
independent r o t a t i on matrix ,

s c a l e f a c t o r and o v e r a l l t r ans f o rmat i on matrix w i l l be
output to superpose . log .

Note that with the except ion o f an o v e r a l l s c a l e f a c to r ,
the se opera t i ons do not

n e c e s s a r i l y commute , so that the order does matter .

=head3 Command l i n e opt i ons

−Tg : puts molecu les COMs on or i g in , per forms the most
genera l l i n e a r t rans fo rmat ion ,

and t r a n s l a t e s back to #2 ’ s o r i g i n a l c en te r o f mass .
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−Tr : puts molecu les COMs on or i g in , r o t a t e s 1 to 2 ,
and then t r a n s l a t e s both back to #2 ’ s o r i g i n a l c en te r o f

mass

−Tt : t r a n s l a t i o n only . Vest iga l , and t h e r e f o r e not
recommended .

−Tc : s c a l i n g . Note that t h i s i s not p a r t i c u l a r l y u s e f u l on
i t s own , and i s p o t e n t i a l l y

mathematica l ly unstab le . While t h i s i s un l i k e l y in
s t r u c t u r e s we are l i k e l y to compare ,

i t i s worth not ing . See dwarf . html for more in fo rmat ion .

=head2 Weighting opt i ons

The f o l l ow ing opt i ons a l low the rms m i s f i t to be weighted
on a per atom ba s i s . While

you can sp e c i f y t h i s as many times as you l i k e , only the
last entry on the command l i n e

w i l l be read in .

−Wb use averaged i nve r s e B−f a c t o r weight ing . The geometr ic
average o f the two B−f a c t o r s i s

used , to f avo r we l l l o c a l i z e d atoms .

−Wm use mass weight ing . This i s used i m p l i c i t l y in the COM
ca l c u l a t i o n s .

In the fu tur e occupancy based weight ing may be inc luded .

=head2 Atomic ”Vett ing ” opt i ons

=head3 What i s t h i s ?

The rout ine pdbtoo l s : : vet pdb i s at the core o f t h i s
d i s t r i b u t i o n ’ s a b i l i t y to compare

p o t en t i a l l y very d i f f e r e n t s t r u c t u r e s . For instance , how
are we to compare two mutant

s t r u c t u r e s to each other ? Can we make a f a i r comparison ?

The s o l u t i o n here i s to throw away any atoms which are not
the same , based on r e s i due number
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and atom type . I t i g no r e s r e s i due type . Any atoms not
common to both s t r u c t u r e s are

automat i ca l l y removed , and the f o l l ow ing opt i ons a l low
fu r th e r r e s t r i c t i o n s . Currently ,

atom type s e l e c t i o n s are g loba l , so you cannot s e l e c t CA
atoms on one r e s i due range and C or N

atoms on another . E. g .

−v10−50 −vCA −vCB −v60−70 −vN

w i l l s e l e c t CA, CB, and N atoms f o r r e s i d u e s 10 through 50
and 60 through 70 . You may

sp e c i f y as many or as few opt i ons as you l i k e . The de f au l t
( no s p e c i f i c a t i o n ) i s to use a l l

atoms common to both molecu les . Things l i k e C.∗ ( a l l
carbon atoms ) do work , s i n c e the f l a g s

are a l l eventua l l y passed to a r egu l a r expre s s i on matcher .
Be c a r e f u l with the se : regex can

be very con fus ing .

In the most r ecent ver s ion , support f o r chain i d e n t i f i e r s (
A−Z) i s a v a i l a b l e . Use the −c

opt ion to s e l e c t cha ins . Note however that to compare two
cha ins to each other , they

must have the same i d e n t i f i e r . This may be f i x ed in fu tur e
ve r s i on s by a l l ow ing the user to

change chain i d e n t i f i e r s .

The rout ine under ly ing t h i s i s a c tua l l y qu i t e complicated ,
and not at a l l t r anspa r ent . See

pdbtoo l s . html f o r more in fo rmat ion .

=head3 Command l i n e opt i ons

−v [ I<r e s i due range> or I<atom type>] Residue ranges must
be s p e c i f i e d as I<number1−number2>

and I<number1> must be sma l l e r than I<number2> or Per l w i l l
get confused . E. g . C<−v10−40> i s

a cceptab l e but C<−v10 40> or C<−v40−10> are not . Atom
types must be s p e c i f i e d as with a C<−v>

f o r each type . For instance , where you to use only C<−
vCACB>, Per l would generate an e r r o r
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i nd i c a t i n g ( e s s e n t i a l l y ) that no coo rd ina t e s were loaded ,
s i n c e no atom type ”CACB” e x i s t s in

the PDB format .

−c [A−Z ] S e l e c t any s p e c i f i e d cha ins . This c a l l s the
rout ine pdbtoo l s : : s e l e c t c h a i n and re turns

a pdb re f conta in ing only atoms with chain i d e n t i f i e r s
s p e c i f i e d . E . g . −cAC w i l l t e l l superpose

to compare only cha ins A and C. Watch out ! Not a l l PDB
f i l e s have chain i d e n t i f i e r s , and some

have very odd chain i d e n t i f i e r s ( such as those wr i t t en by
Refmac5 ) .

=head3 Oddit i e s

I f you c a l l vet pdb i m p l i c i t l y by us ing −v in the c a l l to
superpose , something must be s p e c i f i e d .

A s i n g l e blank −v i s a c tua l l y i n t e rp r e t ed to mean ” load no
coo rd ina t e s ” . I t i s unc l ea r what would

happen i f you used C<−v −vCA> or somesuch . Better not to
t ry i t .

=head2 Input and Output Options
No spaces are a l lowed between f l a g s and t h e i r va lue s !

−1 or − i S p e c i f i e s the input pdb f i l e ( the s t r u c tu r e to be
transformed ) .

−2 or −t S p e c i f i e s the t a r g e t s t r u c tu r e ( to which the
input s t r u c tu r e i s mapped .

−dI<f i l ename> S p e c i f i e s the f i l ename to which superpose
w i l l wr i t e a d i s t ance d i f f e r e n c e

map , and i s the imp l i c i t f l a g to c a l c u l a t e sa id map . The
f i l e w i l l be wr i t t en as a PNG

I<f i l ename >.png in the cur r ent d i r e c t o r y .

This can be computat iona l ly i n t e n s i v e . Choose your ve t t i ng
opt i ons wel l , or wait a whi l e .

The map i t s e l f can be ca l cu l a t ed very quick ly , but drawing
i t takes some time .
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−PI<f i l ename> Output a pdb f i l e I<f i l ename >.pdb ( I f not
s p e c i f i e d , d e f au l t . pdb i s output ) .

=head1 Algorithms and Procedures

See the code i t s e l f f o r d e t a i l e d d i s c u s s i o n s o f methods and
see module documentation

and code f o r d e t a i l e d exp lana t i ons o f under ly ing
subrout ine s .

=cut

# Pragmas and modules
use PDL;
use s t r i c t ;

#use l i b qw(/ Users /marcus/DWARF) ; # Current l o c a t i o n o f
modules .

#use dwar f req ; # Centra l f i l e that
keeps t rack o f DWARF’ s dependencies

use pdbtoo l s ;
use l i n e a r ;

my ( $input pdb , $output pdb , $target pdb , $ t r an s f o rm f l a g s ,
$we ight f l ag , $d i f f map ) ;

my $unity mat = pdl [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] ;
my $transform = $unity mat ; #I n i t i t a l l y de f ined as the

i d e n t i t y matrix .
my ( $ s t r u c t u r e r e f , $ t a r g e t r e f , $coords in , $ coo rds t rg t ,

$coords out ) ;
my @keep what ;
my $cha in s to keep ;

#Defau l t s
$output pdb = ” de f au l t . pdb” ;
my $ s ca l e = 0 . 7 ;

# Prepare a l o g f i l e . Appending a gener i c f i l e minimizes
user input .

open LOG, ”>> a l i gn . l og ” or die ”Cannot open l o g f i l e a l i g n .
l og ” ;

my $datestamp = ‘ date ‘ ;
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# Get f i l e s o f f command l ine , and command arguments
foreach (@ARGV) {

i f (/ˆ−1(.∗) $/ | | /ˆ− i ( . ∗ ) $ /) {
$input pdb = $1 ;
$ s t r u c t u r e r e f = &read pdb ( $1 ) ; #Ref . to hash o f

r e f s . See pd b t o o l s .pm
next ;

} e l s i f (/ˆ−2(.∗) $/ | | /ˆ−t ( . ∗ ) $ /) {
$target pdb = $1 ;
$ t a r g e t r e f = &read pdb ( $1 ) ;
next ;

} e l s i f (/ˆ−T( . ∗ ) $ /) {
$ t r an s f o rm f l a g s .= $1 ;
next ;

} e l s i f (/ˆ−W( . ∗ ) $ /) {
$we i gh t f l a g = $1 ;

} e l s i f (/ˆ−D( . ∗ ) $/ i ) {
$d i f f map = $1 ;

} e l s i f (/ˆ−P( . ∗ ) $ /) {
$output pdb = $1 ;

} e l s i f (/ˆ−v ( . ∗ ) $ /) {
push @keep what , $1 ;

} e l s i f (/ˆ−c ( . ∗ ) $ /) {
$cha in s to keep .= $1 ;

} e l s i f (/ˆ−s ( . ∗ ) $/ i ) {
$ s ca l e = $1 ;

} else {
print LOG ”Option not supported : $ \n” ;

}
}

print LOG ”\n” . ( ”∗”x80 ) . ”\n\nSUPERPOSE run parameters :\n\
n$datestamp” ;

print LOG ” $ t r an s f o rm f l a g s \nMapping $input pdb onto
$target pdb , weight : $we i gh t f l a g \n” ;

print LOG ”Vett ing f l a g s : @keep what , Chains kept :
$ cha in s to keep \n” ;

print LOG ”Dist . D i f f Map s c a l e : $ s c a l e \n” ;
#pr in t STDOUT ” $ s t r u c t u r e r e f \ t $ t a r g e t r e f \n”;
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print ”Vet pdb s o r t i n g and ve t t i ng . . . s e e l og f o r inc luded
r e s i d u e s /atom types .\n” ;

( $ s t r u c t u r e r e f , $ t a r g e t r e f ) = &vet pdb ( $ s t r u c t u r e r e f ,
$ t a r g e t r e f , @keep what ) ;

i f ( $ cha in s to keep ) {
$ s t r u c t u r e r e f = pdbtoo l s : : s e l e c t c h a i n ( $ s t r u c t u r e r e f ,

$ cha in s to keep ) ;
$ t a r g e t r e f = pdbtoo l s : : s e l e c t c h a i n ( $ t a r g e t r e f ,

$ cha in s to keep ) ;
}
print LOG ”Vet pdb f i n i s h e d : ” . ‘ date ‘ . ”\n” ;
#pr in t STDOUT ” $ s t r u c t u r e r e f \ t $ t a r g e t r e f \n”;

# TEST STATEMENTS FOR VET PDB’S RETURN VALUES
#pr in t r e f ( $ s t r u c t u r e r e f −>{”s o r t k e y s ”}) ;
#my @array = @{ $ s t r u c t u r e r e f −>{”atom type ”}} ;
#p r i n t ”Array : @array\n”;
#my @array = keys %$ s t r u c t u r e r e f ;
#p r i n t ”Array o f keys : @array\n”;

# Put s t u f f i n to r e l e v a n t matr ices . . . &g e t c oo rd s re turns
a 3xN pd l

# NB: X i s row 1 , Y i s row 2 , Z i s row 3 . . . EVERYTHING
e l s e i s p red i ca t ed on tha t . . .

$ coo rd s i n = &ge t coo rd s ( $ s t r u c t u r e r e f ) ;
$ c o o rd s t r g t = &ge t coo rd s ( $ t a r g e t r e f ) ;

print STDOUT ”Coordinates loaded . . . \ n” ;
#pr in t ” Input coord ina te s : $coord s in \n”;
#pr i n t ”Output coord ina te s : $ c o o r d s t r g t \n”;

my $masses = pdl ( @{&mass tab le ( $ s t r u c t u r e r e f −>{”
atom type”})} ) ;

my $weights = (0 ∗ $masses ) + 1 ; #PDL does t h i s opera t ion
on every element . . .

my $B1 = pdl [@{ $ s t r u c t u r e r e f −>{”B” } } ] ;
my $B2 = pdl [@{ $ t a r g e t r e f −>{”B”}} ] ;

print STDOUT ”Weights loaded . . . \ n” ;

# Check t h a t the s t r u c t u r e s are the same s i z e .
die ” St ruc tur e s are not the same s i z e , cannot cont inue ! ”
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unless ( $coords in−>getdim (0 ) == $coo rds t rg t−>getdim
(0 ) ) ;

# Weighting schemes .
i f ( $we i gh t f l a g =˜ m/B/ i ) {

$weights = 1/((1/ $B1) + (1/$B2) ) ;
} e l s i f ( $we i gh t f l a g =˜ m/M/ i ) {

$weights = $masses ;
}

# Mass t a b l e i s used only above ; ta ke s a REFERENCE to an
array , and re turns a Reference

sub mass tab le {
my ( $e lements ) = @ ;
my %mass hash = ( ”C” => 12 .011 , ”N” =>14.007 , ”O” =>

15 .999 , ”S” => 32 .064 , ”H” => 1 .008 ) ;
my $ i =0;
my @masses ;
foreach my $atom ( @$elements ) {

$atom =˜ m/ˆ(\w) (\w∗) $ / ;
$masses [ $ i ] = $mass hash{”$1” } ;
$ i += 1 ;
warn ”Unknown atom type : $atom\n” unless ( $atom =˜

m/ˆ [CNOSH] / ) ;
}
return \@masses ;

}

# Move both s t r u c t u r e s to the o r i g i n . Always use masses as
we i gh t s . . .

print LOG ”CENTERING MOLECULES . . . USING MASSES FOR
WEIGHTING\n” ;

print STDOUT ”CENTERING MOLECULES . . . USING MASSES FOR
WEIGHTING\n” ;

my $trans1 = &f i n d t r a n s l a t i o n ( $coords in , $coords in−>
z e r o e s ( ) , $masses ) ;

my $trans2 = &f i n d t r a n s l a t i o n ( $coo rds t rg t , $ coo rds t rg t−>
z e r o e s ( ) , $masses ) ;

my $mol1 cent = &move( $coords in , $ t rans1 ) ;
my $mol2 cent = &move( $coo rds t rg t , $ t rans2 ) ;
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print LOG ” Trans l a t i ons to o r i g i n :\ nMolecule 1 :\ n$trans1 \
nMolecule2 :\ n$trans2 \n\n” ;

print LOG ”NOTE: These are the ve c t o r s from the o r i g i n a l
c en t e r s o f mass to the o r i g i n !\n” ;

print LOG ”Beginning t rans f o rmat i ons . . . \ n” ;

########
#
# Here ’ s the loop to f i n d ( and do ) the trans forms . I t

c y c l e s through a l l op t i ons l o o k i n g
# For any tha t are trans forms .
#
while ( $ t r an s f o rm f l a g s =˜ s /ˆ ( [ gcr th ] ) (\w∗) $/−$2/ i ) {

my $opt ion = $1 ;
i f ( $opt ion eq ’ g ’ ) {

print LOG ”Performing l i n e a r t rans f o rmat i on !\n” ;
my $gen t rans = &g en e r a l l i n e a r ( $transform x

$mol1 cent , $mol2 cent , $weights ) ;
$transform = $gen t rans x $transform ;
print LOG ”Linear t rans f o rmat i on matrix :\

n$gen trans ” ;
} e l s i f ( $opt ion eq ’ c ’ ) {

print STDOUT ” Sca l ing molecu les now . . . \ n” ;
my $ s ca l e = (& s c a l e ( $transform x $mol1 cent ,

$mol2 cent , $weights )−> s l i c e ( ’ ( 0 ) , ( 0 ) ’ ) )∗
$unity mat ;

$transform = $sca l e x $transform ;
print LOG ”\nScale f a c t o r = $ s ca l e \n\n” ;

} e l s i f ( $opt ion eq ’ r ’ ) {
print STDOUT ”Rotating now!\n” ;
my $ r o t a t i on = &f i n d r o t a t i o n ( $mol1 cent ,

$mol2 cent , $weights ) ;
$transform = $ro t a t i on x $transform ;
print LOG ”Rotation matrix :\ n$ro ta t i on ” ;

} e l s i f ( $opt ion eq ’ t ’ ) {
print STDOUT ” Trans l a t ing now!\n” ;
print STDOUT ”WARNING: Trans l a t i on funct i on i s

v e s t i g a l , and may produce mis l ead ing r e s u l t s !\n”
;

my $trans = &f i n d t r a n s l a t i o n ( $coords in ,
$ coo rds t rg t , $weights ) ;

print LOG ” Trans l a t i on vec to r =\n $trans \n” ;
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} e l s i f ( $opt ion eq ’h ’ ) { &shear ( ) ;}
}

print LOG ” Overa l l t r ans f o rmat i on matrix : $transform \n” ;

#Now a c t u a l l y make the trans format ion to ge t the output
coord ina te s

#I f $ transform wasn ’ t changed above , i t w i l l be a 3x3
i d e n t i t y matrix .

#$coords out = &transform ( $coords in , $ transform , $ trans1 ,−
$ t rans2 ) ;

# The coord ina te s are in the PDL format , whereas wr i t e pdb
r e qu i r e s a s p e c i a l format de f ined in

# read pdb ( see pd b t o o l s .pm) . &wri te new coords hand les
copying the new coord ina te s in to the

# o ld s t r u c t u r e record .

#NOTE WELL: This w i l l w r i t e out a l l atoms tha t were in the
o r i g i n a l pdb f i l e s !

#Al l o f them w i l l be tranformed accord ing to the
trans format ion determined above .

my $pdb re f = pdbtoo l s : : read pdb ( $input pdb ) ;
my $coords = pdbtoo l s : : g e t c o o rd s ( $pdb re f ) ;
$coords out = &transform ( $coords , $transform , $trans1 ,−

$trans2 ) ;
print join ” ” , $coords out−>dims ( ) , ”\n” ;
$pdb re f = &wr i te new coords ( $coords out , $pdb re f ) ;
&write pdb ( $pdb ref , $output pdb ) ;

#pr in t LOG $coords out ;
$coords out = &transform ( $coords in , $transform , $trans1 ,−

$trans2 ) ;
print LOG ”RMS m i s f i t ( angstroms ) : ” ;
my $rms = &rms ( $coords out , $ coo rds t rg t , $weights ) ;
print LOG ”$rms\n” ;

#Write the atom−by−atom d i f f e r e n c e s to a f i l e
open DIFFS , ”> a l i gn . d i f f s ” ;
my @di f f s = &rms ( $coords out , $ coo rds t rg t , ones ( $weights ) ) ;
my $atom = 1 ;
foreach ( @d i f f s ) {

print DIFFS ”$atom\ t $ \n” ;
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$atom ++;
}
close DIFFS ;

# Clean up a l i t t l e b i t . . .
undef $weights ;
undef $masses ;

undef $mol1 cent ;
undef $mol2 cent ;

print LOG ‘ date ‘ ;

####
#
# Next , c a l c u l a t e anyth ing e l s e the user wanted . . .

# Di f f e r ence maps
my $drawmap = ’ yes ’ ; #This f l a g e x i s t s to a l l ow more

f l e x i b l e use o f d d i f f
# and draw mat , wh i l e here c a l l i n g

only d d i f f .
&dd i f f ( $coords out , $ coo rds t rg t , $di f f map , $ sca l e , $drawmap)

i f ( $d i f f map ) ;

print LOG ”Returned from dd i f f : ” i f ( $d i f f map ) ;
print LOG ‘ date ‘ ;
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B.4 multipose

This script aligns multiple structures at once. Like superpose it can be invoked
to only align on part of the input structures, but will output complete structures
based on those alignments.

#!/ usr / b in / p e r l −w

use PDL;
use PDL : : Opt : : Simplex ;
use PDL : : N i c eS l i c e ;

use l i n e a r ;
use pdbtoo l s ;

use s t r i c t ;

# This program i s des igned to s imu l taneous l y minimize
# the pa i rw i s e d i f f e r e n c e s between mu l t i p l e p ro te in

s t r u c t u r e s .
#
# A grea t dea l o f the p repara t i on work i s done s im i l a r l y to

my other
# program , superpose . However , due to the nature o f t h i s

problem , a
# numerical op t im i za t i on method i s implemented here .

Current ly , the
# PDL: : Opt : : Simplex rou t ine i s used . I f t h i s appears to be

i n e f f i c i e n t or
# f ru s t r a t e d , then a s imula ted annea l ing method may be

implemented l a t e r .
#
# Vet t ing i s handled d i f f e r e n t l y here than in superpose .

See be low .
#
# The current implementat ion a l s o uses r o t a t i o n s and

t r a n s l a t i o n s only .
# Weighting can be by mass , B−f a c to r , or noth ing a t a l l .

# Dec l a ra t i ons
my @coord pdls ; #An array to ho ld the pd l r e f e r en c e s o f

coord ina te s
my @s t r c r e f s ; #This array ho l d s r e f e r en c e s to the pdb

s t r u c t s def ’ d in pd b t o o l s .pm
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my @weight pdls ;

my @molecules ; #An array o f r e f e r en c e s to hashes which
conta in pd l r e f s to u s e f u l in format ion .

my @trans ; #This w i l l ho ld the t r a n s l a t i o n s o f the cen te r s
o f mass to use l a t e r .

my $rms ;

# Read in the command l i n e . NOTE: Unl ike superpose , i t
r e qu i r e s

# some v e t t i n g f l a g s to be s e t ( even i f i t ’ s j u s t an empty
s t r i n g ) and

# i t does not handle cha ins ( though t h i s cou ld be
implemented us ing

# pdb t oo l s : : s e l e c t c h a i n . )

d i e ”Mult ipose : \”<ve t t i ng f l a g s >\” \” <weighting>\” pdb1 .
pdb pdb2 . pdb . . . ”

i f ( s c a l a r @ARGV < 4) ;

my @vetFlags = s p l i t (/\ s+/, sh i f t @ARGV) ;
my $weight ing = sh i f t @ARGV;
my @PDBs = @ARGV;

p r i n t ”Now read ing pdb f i l e s . . . ” ;

# Now load the f i l e s
f o r each my $pdb (@PDBs) {

push @s t r c r e f s , read pdb ($pdb ) ;
}

# Vet the f i l e s pa i rw i s e . This i s h o r r i f y i n g l y i n e f f i c i e n t
. . .

my $nStruct = @s t r c r e f s ;
p r i n t ”Number o f s t r u c t u r e s loaded : $nStruct \n” ;
f o r each my $ i ( 0 . . $nStruct −1) {

f o r each my $ j ( $ i +1. . $nStruct −1) {
( $ s t r c r e f s [ $ i ] , $ s t r c r e f s [ $ j ] ) = vet pdb ( $ s t r c r e f s [ $ i

] , $ s t r c r e f s [ $ j ] , @vetFlags ) ;
}

}



259

#pr in t ”Vet t ing op t i ons used : mm@{ v e tF l a g s }mm\n”;

# Now ge t coord ina te s and s e t the appropr i a t e we i gh t ing
f o r each my $ r e f ( @ s t r c r e f s ) {

push @coord pdls , g e t c o o rd s ( $ r e f ) ;
#pr in t ”Coords : ” . &ge t c oo rd s ( $ r e f ) ;
i f ( $weight ing eq ’mass ’ ) {

push @weight pdls , pdl (@{&mass tab le ( $re f−>{”atom type”
}) }) ;

} e l s i f ( $weight ing eq ’B’ ) {
push @weight pdls , ( pdl (@{ $re f −>{”B”}}) ) ∗∗(−1) ;

} e l s i f ( $weight ing eq ’ none ’ ) {
push @weight pdls , 1 + (0 ∗ pdl (@{ $re f−>{”B”}}) ) ;

}

#Eventua l l y , some error check ing here would be good !
# However , v e t pdb and the o ther r ou t i n e s in
# pdb t oo l s .pm have become very robus t in deve l op ing

superpose . . .
}

# Construct the array o f hashes to e f f i c i e n t l y pass
e v e r y t h i n g . . .

for my $ i ( 0 . . $nStruct −1) {
push @molecules , {” coords ” => $coo rd pd l s [ $ i ] , ”weights ”

=> $we ight pd l s [ $ i ] , ”pdbData” => $ s t r c r e f s [ $ i ] } ;
}

# Move a l l mo lecu le s COW to the o r i g i n . . .

f o r each my $molecule ( @molecules ) {
#pr in t ” $molecule \n”;
#pr i n t $molecule−>{”coords ”} ;
#p r i n t $molecule−>{”we i gh t s ”} ;
my $trans = f i n d t r a n s l a t i o n ( $molecule−>{” coords ” } ,0∗(

$molecule−>{” coords ”}) , $molecule−>{”weights ”}) ;
push @trans , $ t rans ;
p r i n t ” Trans l a t i on to o r i g i n f o r $molecule : $ t rans \n” ;
$molecule−>{” centCoords”} = move( $molecule−>{” coords ”} ,

$ t rans ) ;
p r i n t ” Trans l a t i on complete .\n” ;
#pr in t $molecule−>{”centCoords”}−> t ranspose () ;

}
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# Devious t e s t i n g idioms . . .
#$molecu le s [0]−>{”centCoords ”} =
# &GenRot (1 ,0 . 45 ,0 . 05 ) x $molecu le s [0]−>{”centCoords ”} ;

# Now i t comes down to a minimizat ion problem .
# The r e s i d u a l i s de f ined as the sum of a l l
# pa i rw i s e d i f f e r e n c e s .

#I n i t i a l parameters to t r y . Euler ang l e s in rad ians . . .
my $ in i tRot = PDL−>z e r o e s (3∗ ( $nStruct −1) ) ;

# th i s i s used by PDL : : . . . : : s imp lex to genera te
# the i n i t i a l s imp lex i t i s e s s e n t i a l l y the ” s i z e ”
#of the s imp lex . May need to be ad jus t ed .
my $ i n i t S i z e = 3 .14159/36 ;

#convergence c r i t e r i o n in terms o f s t e p s i z e o f the s imp lex .
my $convValue = 0 . 0 0 1 ;

#Don’ t do more i t e r a t i o n s than t h i s .
my $maxIter = 1000 ;

p r i n t ”Beginning opt imiza t i on . . . \ n” ;
my ( $optimumRotations , $ s s i z e )

= PDL : : Opt : : Simplex : : s implex ( $ initRot , $ i n i t S i z e ,
$convValue , $maxIter ,\&main : : rotRMS , undef ) ;

p r i n t ”Optimum Rotat ions : $optimumRotations \nStep S i ze :
$ s s i z e \n” ;

my ( $ f ina l rms , @newmols ) = rotRMS( $optimumRotations ) ;
p r i n t ” F ina l RMS: $ f ina l rms \n” ;

# Added 25 August 2005
# Seems l i k e a n ice idea to j u s t average
# the s t r u c t u r e s ( not w r i t t e n out )
# and c a l c u l a t e the rms f o r each atom !

my $avcoords = $newmols [0]−>{” centCoords”}−>z e r o e s ( ) ;
my $nn=0;
f o r each my $newmol (@newmols ) {

$avcoords += $newmol−>{” centCoords” } ; #th i s i s a pd l .
$nn++;
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}
#pr in t $avcoords ;
$avcoords /= $nn ;
#pr in t STDERR ”$nn\n”;
my $d i f f s q = $avcoords ( : , ( 0 ) )−>z e r o e s ( ) ;
f o r each (@newmols ) {

my $v e c d i f f = $ −>{” centCoords ”} − $avcoords ;
$ d i f f s q += ( ( $ve cd i f f−>t ranspose ( ) x $ v e c d i f f )−>diagona l

( 0 , 1 ) ) ;
}
$ d i f f s q /= ( $nn ) ;
#pr in t $ d i f f s q ;
my @sigma i = ( sq r t ( $ d i f f s q ) )−> l i s t ( ) ;
open DAT, ”> mult ipose . dat” ;
f o r each ( @sigma i ) {

pr i n t DAT ” $ \n” ;
}

# Need to wr i t e out the e n t i r e pdb f i l e . . .
# This i s super k luge−y , but we ’ l l j u s t reread the o r i g i n a l

pdb f i l e s ,
# wr i t e the coord ina te s to the r i g h t p lace , and rerun

rotRMS . . .
#

#Free up some v a r i a b l e s and arrays .
undef ( @molecules ) ;
undef ( @ s t r c r e f s ) ;
d i e ”WARNING: molecu les are not undef ined . ” i f @molecules ;

# Reload pdb f i l e s , g e t coord ina tes , and t r a n s l a t e the
mo lecu le s

#Don ’ t need to s e t any we i gh t ing . . .
pr i n t ”Commencing f u l l pdb t rans f o rmat i ons . . . \ n” ;
f o r each my $pdb (@PDBs) {

my $ r e f = &read pdb ( $pdb ) ;
push @s t r c r e f s , $ r e f ;
my $tmpCoords = &ge t coo rd s ( $ r e f ) ;
my $centCoords = &move( $tmpCoords , sh i f t @trans ) ;
push @molecules , {” centCoords” => $centCoords , ”weights ”

=> 1 + (0 ∗ pdl (@{ $re f−>{”B”}}) ) } ;
}
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# Now the molecu le s shou ld be loaded in , wi th no v e t t i n g .
Apply r o t a t i o n s

my ( undef , @f ina lCoords ) = rotRMS( $optimumRotations ) ;

#Write the pdb f i l e s . . .
f o r each my $ i ( 0 . . @ s t r c r e f s −1) {

wri te new coords ( $ f ina lCoo rds [ $ i ]−>{” centCoords ” } ,
$ s t r c r e f s [ $ i ] ) ;

wr ite pdb ( $ s t r c r e f s [ $ i ] , ”mOut${ i } . pdb” ) ;
}

######################################################
# Subrout ines f o l l ow . . . .

sub rotRMS {

#pr in t ” In rotRMS”;
my ( $ r o t a t i on s ) = @ ;
my $nd = $ro ta t i ons−>getdim (0 ) ;
my $nPoints = $ro ta t i ons−>getdim (1 ) ;
my $sums = ze r o e s ( $nPoints ) ;
my $tmpSum ;

my $debug = 0 ;
p r i n t ”\nrotRMS\ tdims : $nd po in t s : $nPoints \n” i f $debug ;
p r i n t $ r o t a t i on s i f $debug ;

my @rotMols ;

for (my $ i =0; $i<$nPoints ; $ i++) {
my @angles = l i s t ( $ ro ta t i ons−>s l i c e ( ” : , ( $ i ) ” ) ) ;
my @rotatedMols ;
p r i n t ”\nCycle : $ i \ t ” i f $debug ;
p r i n t ”\nAngles : @angles \n” i f $debug>1;
# Rota t ions shou ld be a PDL, with 3 ro t . ang l e s
# fo r each o f N−1 s t r u c t u r e s . I t i s e a s i e s t
# f o r what f o l l o w s j u s t to s e t the l a s t o f the
# ro t a t i o n s to the i d e n t i t y matrix . Note t h a t
# molecu le s i s a g l o b a l v a r i a b l e from the top
# l e v e l o f the s c r i p t . So much f o r s t r i c t n e s s .
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#pr in t ”@molecules \n”;

#Construct i n d i v i d u a l r o t a t i on matrices , and append
# each to the appropr i a t e molecule .
f o r each my $mol ( @molecules ) {

i f ( @angles ) {
my $a = sh i f t @angles ; my $b = sh i f t @angles ; my $g

= sh i f t @angles ;
$mol−>{” currentRot”} = &GenRot( $a , $b , $g ) ;

} else {
$mol−>{” currentRot”} = &GenRot (0 , 0 , 0 ) ; #The

i d e n t i t y matrix
}

}
pr i n t ”Molecules ro ta t ed . . . \ t ” i f $debug ;

# Now, we don ’ t want to screw with the o r i g i n a l
# s t ruc tu r e s , so we need to copy them over
# in to a new spot . Be c a r e f u l !

f o r each my $mol ( @molecules ) {
my $tmpWt = $mol−>{”weights ”}−>copy ( ) ;
my $tmpRotCoord = ( $mol−>{” currentRot”}) x ( $mol−>{”

centCoords” }) ;
push @rotatedMols , {”weights ” => $tmpWt , ” centCoords ”

=> $tmpRotCoord} ;
}

pr i n t ”Molecules copied . . . \ t ” i f $debug ;

# And now . . .
# Behold the s t up i d index ing t r i c k s ! PDL works on
# re f e r en c e s . $tmpSum i s a r e f to an entry in $sums
# so changing the va lue o f $tmpSum changes the
# correspond ing element in $sums .
$tmpSum = $sums−>s l i c e ( ” ( $ i ) ” ) ;
$tmpSum .= sq r t ( ( sum &mu l t d i f f ( @rotatedMols ) ) /(

$rotatedMols [0]−>{” centCoords”}−>getdim (0 ) ) ) ;

# This next l i n e de se rve s some note , s ince i t took
# me a wh i l e to ge t i t r i g h t . I want to average
# the ms va l u e s between a l l ( ordered , but matched )
# atoms . That means I need to d i v i d e through by the
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# number o f comparisons made . Consider a d i f f e r e n c e
# matrix D i j : the d iagona l i s zero , and the uht and
# l h t are t ranspose s o f each o ther . So , the number o f
# unique non−zero e lements i s N(N−1)/2 ( note t h a t the
# redundancy o f l h t and uht i s taken care o f in &

mu l t d i f f .
$tmpSum /= sqr t ( ( s c a l a r @rotatedMols ) ∗ ( ( s c a l a r

@rotatedMols ) − 1) /2) ;
p r i n t ”sum ca l cu l a t ed .\n” i f $debug ;
@rotMols = @rotatedMols ;

}
pr i n t $sums i f $debug ;
p r i n t ”\nReturning to PDL : : Opt : : Simplex : : s implex .\n” i f

$debug ;
wantarray ? return ( $sums , @rotMols ) : return $sums ;

}

sub GenRot {
my ($a , $b , $g ) = @ ;
my $Ra = pdl [ [ cos ( $a ) , s i n ( $a ) , 0 ] , [ − s i n ( $a ) , cos ( $a )

, 0 ] , [ 0 , 0 , 1 ] ] ;
my $Rb = pdl [ [ cos ( $b ) , 0 , −s i n ( $b ) ] , [ 0 , 1 , 0 ] , [ s i n ( $b ) ,0 ,

cos ( $b ) ] ] ;
my $Rg = pdl [ [ cos ( $g ) , s i n ( $g ) , 0 ] , [ − s i n ( $g ) , cos ( $g )

, 0 ] , [ 0 , 0 , 1 ] ] ;
my $R = $Rg x $Rb x $Ra ;

}

sub mu l t d i f f {
my @mols = @ ;
#pr in t j o i n ” ” , @mols , ”\n”;

my $ r e s i d u a l = 0∗( $mols [0]−>{” centCoords”}−> s l i c e ( ’ : , ( 0 )
’ ) ) ;

my $sumWeights ; #Summed we i gh t s f o r a g iven atom . . . so we
can normal ize .

f o r each my $ i (@mols) {
f o r each my $ j (@mols) {

#pr in t ” S t ruc tu r e s : $ i , $ j \n”;
my ( $curCoords1 , $curCoords2 ) = ( $i−>{” centCoords” } ,

$ j−>{” centCoords ”}) ;
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my ( $curWeight1 , $curWeight2 ) = ( $i−>{”weights ” } , $ j
−>{”weights ”}) ;

#pr in t $curCoords1−>t ranspose () , $curCoords2−>
t ranspose () ;

# Note what i s be low i s PDL syntax . . .
my $uw = ( ( $curCoords1−$curCoords2 )−>t ranspose ( ) ) x (

$curCoords1−$curCoords2 ) ;

#Don ’ t doub le count : d i v i d e by 2 !
$ r e s i d u a l += ($uw−>diagona l ( 0 , 1 ) )∗ s q r t ( $curWeight1 ∗

$curWeight2 ) /2 ;
}

}

$ r e s i d u a l ;
}

sub mass tab le {
my ( $elements ) = @ ;
my %mass hash = ( ”C” => 12 .011 , ”N” =>14.007 , ”O” =>

15 .999 , ”S” => 32 .064 , ”H” => 1 .008 ) ;
my $ i =0;
my @masses ;
f o r each my $atom ( @$elements ) {

$atom =˜ m/ˆ(\w) (\w∗) $ / ;
$masses [ $ i ] = $mass hash{”$1” } ;
$ i += 1 ;
warn ”Unknown atom type : $atom\n” un l e s s ( $atom =˜ m/ˆ [

CNOSH] / ) ;
}
return \@masses ;

}
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B.5 avstruct

Averages input structures in real space.

#!/ usr / b in / p e r l −w

use PDL;

use l i n e a r ;
use pdbtoo l s qw/ read pdb write pdb g e t co o rd s

wr i te new coords w r i t e f i e l d g e t v a l u e s a s p d l / ;

use s t r i c t ;

i f (@ARGV == 0) {
print ” avs t ruc t <output pdb f i l e > <input pdb f i l e s >\n” ;
exit ;

}
my $pdb out = sh i f t @ARGV;
my @coords pdl ;
my $ s t r u c t ;
my @B;

foreach my $ f i l e (@ARGV) {
$ s t r u c t = read pdb ( $ f i l e ) ;
push @coords pdl , g e t c o o rd s ( $ s t r u c t ) ;
my $tmp = g e t v a l u e s a s p d l ( $st ruct , ’B ’ ) ;
push @B, $tmp ;
print join ” ” , $tmp−>dims ( ) , ”\n” ;

}

my $sum = $coo rds pd l [0]−> z e r o e s ;
my $B = $B[0]−> z e r o e s ;

foreach ( @coords pdl ) {
$sum += $ ;

}
foreach (@B) {

$B += $ ;
}

$sum = $sum/( scalar @coords pdl ) ;
$B /= scalar @B;
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#pr in t $sum ;
#pr in t $ s t ruc t , ”\n”;

#pr i n t $B;

w r i t e f i e l d ($B , ’B ’ , $ s t r u c t ) ;
#my $ t e s t = g e t v a l u e s a s p d l ( $ s t ruc t , ’B ’ ) ;
#pr i n t $ t e s t ;
#p r i n t j o i n ” ” , $ t e s t−>dims () , ”\n”;
#pr i n t j o i n ” ” , $B−>dims () , ”\n”;

wri te new coords ($sum , $ s t r u c t ) ; # Obnoxious overwr i te−−but
I have no b lank pdb cons t ruc to r . . .

write pdb ( $st ruct , $pdb out ) ;
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B.6 helixcalc

This script calculates helix geometry. See the code itself for references.

#!/ usr / b in / p e r l −w

#####################################################
#
# h e l i x c a l c : ./ h e l i x c a l c input . pdb
#
# MDC 18 January 2005
#
# Ca l cu l a t e s h e l i x geometry o f an input pdb f i l e us ing
# the method o f Sugeta and Miyazawa , 1967
# Biopolymers 5 : 673−679
#
# in sp i r e d by Kumar and Bansal , B iophys i ca l J . ,
# 71:1574−1586 , 1996 who implemented the method in
# Fortran .
#
# h e l i x c a l c [−h <he l i xpdb >] in . pdb
#
# h e l i x c a l c w i l l c a l c u l a t e o r i e n t a t i o n s o f h e l i c e s
# of in . pdb o p t i o n a l l y us ing the secondary s t r u c t u r e
# d e f i n i t i o n s in <he l i xpdb>
#
# The s c r i p t w i l l f i n i s h by wr i t i n g a t a b l e o f
# h e l i c a l parameters to STDOUT and a pdb f i l e drawing
# each h e l i c a l a x i s ( which may be curved or k inked ) .
#
######################################################

use s t r i c t ;
use PDL;
use PDL : : N i c eS l i c e ;
use F i l e : : Basename ;
use pdbtoo l s ;
use l i n e a r ;

my $debug = 0 ;

my $useh ;
my $hel ixpdb = undef ;
i f ($ARGV[ 0 ] eq ”−h” ) {
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sh i f t @ARGV;
$hel ixpdb = sh i f t @ARGV;
$useh = 1 ;

}

my @ f i l e s = @ARGV;

foreach my $ f i l e ( @ f i l e s ) {
$hel ixpdb = $ f i l e unless $useh ;
print ”Using $hel ixpdb f o r h e l i x d e f i n i t i o n s .\n\n” ;

my $pdb re f = read pdb ( $ f i l e ) ;
my ( $shortname , $dir , $type ) = F i l e : : Basename : : f i l e p a r s e (

$ f i l e , qr /\ . pdb/) ;
open HELIX, ”> ${ shortname} hx . pdb” ;
open TABLE, ”> ${ shortname} hx . tab” ;

#Get the h e l i c e s
my $hpdb re f = read pdb ( $hel ixpdb ) ;
my @vet s t r ing s = pdbtoo l s : : g e t h e l i c e s ( $hpdb re f ) ;

#pr in t ” $hpdb re f , $pdb r e f \n”;
#pr i n t j o i n ” ” , ”VET: ” , @ve t s t r ing s , ”\n”;

# Print out the re s i due ranges f o r each h e l i x .
foreach ( @vet s t r ing s ) {

print STDERR ”$ \n” i f $debug ;
}

# Now go h e l i x by h e l i x and cons t ruc t the geometry .
my $ l a b e l = ’A ’ ;
my $ i = 1 ;
my %he l i xTab l e ; #This hash w i l l s t o r e h e l i c a l parameters .

foreach my $ve t s t r i ng ( @vet s t r ing s ) {
print STDERR ”VET: $ve t s t r i ng \n” i f $debug ;
# Define some l o c a l arrays .
# Note t h a t l e n g t h s o f v e c t o r s in axes w i l l be the

l o c a l h e l i c a l p i t c h
my $avg theta = pdl [ 0 ] ;
my $avg pi tch = pdl [ 0 ] ;
my $avg ax i s = pdl [ 0 , 0 , 0 ] ;
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#Usefu l f o r proper numbering o f h e l i c a l segments l a t e r
on

my @startend = sp l i t /−/, $ve t s t r i ng ;
my @range = $sta r t end [ 0 ] . . $ s ta r t end [ 1 ] ;

my $he l i x = pdbtoo l s : : vet pdb ( $pdb ref , $pdb ref , ”CA” ,
$ve t s t r i ng ) ;

# Coordinates o f CA atoms in h e l i x .
my $hel ixC = pdbtoo l s : : g e t c o o rd s ( $he l i x ) ;

my $hel ixN = $hel ixC−>getdim (0 ) ; #number o f r e s i due s in
the h e l i x .

print STDERR ”Hel ix $ l a b e l \n” i f $debug ;
# Current s t a r t i n g re s i due .
# $n + 3 must be l e s s than or equa l to $he l i xN .
my $n = 0 ;
my $pos ;

my $AT LET = ’A ’ ; #Le t t e r i n g o f ”atoms” in pdb f i l e ;

foreach my $nCur ( $n . . $helixN −4) {

# disp lacement v e c t o r s f o r the four atoms in que s t i on
.

my $B12 = $hel ixC ( ( $nCur+1) , : ) − $hel ixC ( ( $nCur ) , : ) ;
my $B23 = $hel ixC ( ( $nCur+2) , : ) − $hel ixC ( ( $nCur+1) , : )

;
my $B34 = $hel ixC ( ( $nCur+3) , : ) − $hel ixC ( ( $nCur+2) , : )

;

# Di f f e r ence v e c t o r s used to d e f i n e l o c a l h e l i c a l
a x i s

my $C13 = $B12 − $B23 ;
my $C24 = $B23 − $B34 ;

# h e l i c a l ang l e s
my $theta = acos ( ( $C13 x $C24−>t ranspose ( ) ) /( sqrt (sum

($C13∗$C13 ) ) ∗ sqrt (sum($C24∗$C24 ) ) ) ) ;
$avg theta += $theta ;

# h e l i c a l a x i s : c ro s s product o f d i f f e r e n c e
# vec tors , normal ized . d = d i s t an c e
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# along a x i s between atoms 2 and 3 .
my $ax i s = ( c r o s s ($C13 , $C24 ) ) ;
$ax i s = $axis−>norm ( ) ;
my $p i tch = $B23 x $axis−>t ranspose ( ) ;

# For purposes o f p l o t t i n g , the a x i s must be o f l e n g t h
p i t c h .

$ax i s ∗= $pitch ;

# These aren ’ t r e a l l y averages , they are sums .
# They ’ l l be normed l a t e r .

$avg ax i s += $ax i s ;
$avg p i tch += $pitch ;

( print $B12 , ”\ t ” , $B12−>getdim (0 ) , ”\ t ” , $theta , $pitch ,
”\n” ) i f $debug > 1 ;

#i f ($nCur == 0) {
$pos = $hel ixC ( ( $nCur ) , : ) + $hel ixC ( ( $nCur+1) , : ) +

$hel ixC ( ( $nCur+2) , : ) + $hel ixC ( ( $nCur+3) , : ) ;
$pos /= 4 ;
#}
i f ( $nCur == 0) {

print HELIX ”REMARK Hel ix $ l a b e l \n” ;
printf HELIX ”HET HEL%7d%8d HELIX−$ i \n” ,

100∗ $i , $helixN −2;
#$pos = $he l i xC ( (1 ) , : ) − ( 0 . 5 ) ∗$C13/(1 − cos ( $ t h e ta

) ) ;
my @pos = $pos−> l i s t ( ) ;
printf HELIX ”ATOM %5d C$AT LET HEL%6d%12.3 f %8.3

f %8.3 f 1 .00 10.00\n” , 100∗ $i ,100∗ $i , @pos ;
$AT LET++;
# Then f o r the t a b l e
print TABLE ”Table o f h e l i x parameters f o r He l ix

$ l abe l , $ f i l e \n” ;
print TABLE ”NUMBER PITCH ANGLE AXIS\n” ;

}

#$pos += $ax i s ;
my @pos = $pos−> l i s t ( ) ;
printf HELIX ”ATOM %5d C$AT LET HEL%6d%12.3 f %8.3 f

%8.3 f 1 .00 10.00\n” , 100∗ $ i+$nCur+1 ,100∗ $i , @pos ;
my @axis = $axis−>norm ( )−> l i s t ( ) ;
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printf TABLE (”%6d%10.2 f %10.2 f %7.5 f %9.5 f %9.5 f \n” ,
$range [ $nCur ] ,

$pitch−>at (0 , 0 ) , ( $theta−>at (0 , 0 ) )
∗180/3.14159 , @axis ) ;

$AT LET++;
}

# Print out average p i tch , angle , and a x i s
my $avaxi s = $avg axi s−>norm ( ) ;
$avg p i tch /= $hel ixN − 3 ;
$avg theta /= $hel ixN − 3 ;
print TABLE ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ;
printf TABLE (”AVER %10.2 f %10.2 f %7.5 f %9.5 f %9.5 f \n\n”

, $avg pitch−>at (0 , 0 ) ,
( $avg theta−>at (0 , 0 ) ) ∗180/3.14159 ,

$avaxis−> l i s t ( ) ) ;

$ l a b e l++; $ i++;

# By now the g raph i c a l r e p r e s en t a t i on s are c a l c u l a t e d .
# While cute , t h e s e are not p a r t i c u l a r l y u s e f u l . They
# do prov ide a good check t h a t t h i n g s have not wandered
# way o f f i n to never−never land .
}

}

# Vector c ro s s product , on ly in 3D. I t would be n ice in
# the long run to make a c h r i s t o f f e l symbol genera tor .
sub c r o s s {

my ( $vec1 , $vec2 ) = @ ;
my $matrix = pdl [ [ 0 , −$vec2−>at (2 ) , $vec2−>

at (1 ) ] ,
[ $vec2−>at (2 ) , 0 , −$vec2−>

at (0 ) ] ,
[−$vec2−>at (1 ) , $vec2−>at (0 ) , 0 ] ] ;

return $vec1 x $matrix ;
}
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B.7 magdiff

A convenient function for magnifying small structural changes.

#!/ usr / b in / p e r l −w

use s t r i c t ;
use pdbtoo l s ;
use PDL;
use PDL : : N i c eS l i c e ;

die ”Usage : magdi f f v e t f l a g s f a c t o r r e f e r e n c e . pdb d i f f e r e n t
. pdb\n” unless @ARGV==4;

my $pdb2 = pop @ARGV;
my $pdb1 = pop @ARGV;
my $mag = pop @ARGV;
my @vet = sp l i t /\s+/,$ARGV[ 0 ] ;

my $pdbRef1 = read pdb ( $pdb1 ) ;
my $pdbRef2 = read pdb ( $pdb2 ) ;

my ( $vRef1 , $vRef2 ) = vet pdb ( $pdbRef1 , $pdbRef2 , @vet ) ;
my $coords1 = ge t coo rd s ( $vRef1 ) ;
my $coords2 = ge t coo rd s ( $vRef2 ) ;

my $ve c t o rD i f f = $coords2 − $coords1 ;
my $newcoords = $coords1 + $mag∗ $ve c t o rD i f f ;

#pr in t $newcoords ;

wri te new coords ( $newcoords , $vRef2 ) ;

wr ite pdb ( $vRef2 , ’ magdi f f . pdb ’ ) ;
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B.8 Master figure generation script

This script calls many of the Perl scripts listed above, and should provide a useful
example of how to integrate this scripts with other commonly available crystallo-
graphic and plotting software.

#!/ b in / bash

# This i s the master s c r i p t used to do a l l a l ignment and
f i g u r e making , e xcep t

# fo r f i g u r e s made with pymol ( a l t hough t h i s s c r i p t
g enera te s a l l necessary

# o b j e c t s (maps , pdb f i l e s , magni f ied d i f f e r e n c e pdb f i l e s )
needed f o r PyMOL images

# t h i s s c r i p t w i l l a l s o do a l l o f the i n t e g r a t i o n o f
# e l e c t r o n d e n s i t i e s in the c a v i t i e s .

# Things miss ing : c a v i t y volumes , s i d e chain a l i gnments and
rmsd va l u e s .

# Link to a l l necessary f i l e s ( don ’ t make more cop i e s ! ! ! )
# Not cu r r en t l y in use ( i . e . I ’ l l make cop i e s and burn

memory)

# Wierd qu i r k : there ’ s on ly one wt 0k s t ruc ture , so , make a
copy and average

# i t wi th i t s e l f !
cp wt0k a . pdb wt0k fake . pdb ;

# Align and average comparable s t r u c t u r e s

mult ipose ”MC” ”none” mt0k ∗ . pdb ; avs t ruc t mt0kav . pdb mOut
∗ . pdb ; rm mOut∗ . pdb

#mul t ipose ”MC” ”none” mt1k ∗ . pdb ; a v s t r u c t mt1kav . pdb mOut
∗ . pdb ; rm mOut∗ . pdb

mult ipose ”MC” ”none” mt2k ∗ . pdb ; avs t ruc t mt2kav . pdb mOut
∗ . pdb ; rm mOut∗ . pdb

mult ipose ”MC” ”none” wt0k ∗ . pdb ; avs t ruc t wt0kav . pdb mOut
∗ . pdb ; rm mOut∗ . pdb

#mul t ipose ”MC” ”none” wt1k ∗ . pdb ; a v s t r u c t wt1kav . pdb mOut
∗ . pdb ; rm mOut∗ . pdb

mult ipose ”MC” ”none” wt2k ∗ . pdb ; avs t ruc t wt2kav . pdb mOut
∗ . pdb ; rm mOut∗ . pdb
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mult ipose ”MC 82−162” ”none” mt0k ∗ . pdb ; avs t ruc t mt0kavc .
pdb mOut∗ . pdb ; rm mOut∗ . pdb

#mul t ipose ”MC 82−162” ”none” mt1k ∗ . pdb ; a v s t r u c t mt1kavc .
pdb mOut∗ . pdb ; rm mOut∗ . pdb

mult ipose ”MC 82−162” ”none” mt2k ∗ . pdb ; avs t ruc t mt2kavc .
pdb mOut∗ . pdb ; rm mOut∗ . pdb

mult ipose ”MC 82−162” ”none” wt0k ∗ . pdb ; avs t ruc t wt0kavc .
pdb mOut∗ . pdb ; rm mOut∗ . pdb

#mul t ipose ”MC 82−162” ”none” wt1k ∗ . pdb ; a v s t r u c t wt1kavc .
pdb mOut∗ . pdb ; rm mOut∗ . pdb

mult ipose ”MC 82−162” ”none” wt2k ∗ . pdb ; avs t ruc t wt2kavc .
pdb mOut∗ . pdb ; rm mOut∗ . pdb

# Don’ t need the f ake anymore
rm wt0k fake . pdb

# Align the h igh P s t r u c t u r e s onto the ambient s t r u c tu r e s ,
reuse names

superpose −Tr −vMC −v1−162 −1mt2kav . pdb −2mt0kav . pdb ; mv
de f au l t . pdb mt2kav . pdb

superpose −Tr −vMC −v1−162 −1mt1kav . pdb −2mt0kav . pdb ; mv
de f au l t . pdb mt1kav . pdb

superpose −Tr −vMC −v1−162 −1wt2kav . pdb −2wt0kav . pdb ; mv
de f au l t . pdb wt2kav . pdb

superpose −Tr −vMC −v1−162 −1wt1kav . pdb −2wt0kav . pdb ; mv
de f au l t . pdb wt1kav . pdb

superpose −Tr −vMC −v82−162 −1mt2kavc . pdb −2mt0kavc . pdb ; mv
de f au l t . pdb mt2kavc . pdb

superpose −Tr −vMC −v82−162 −1mt1kavc . pdb −2mt0kavc . pdb ; mv
de f au l t . pdb mt1kavc . pdb

superpose −Tr −vMC −v82−162 −1wt2kavc . pdb −2wt0kavc . pdb ; mv
de f au l t . pdb wt2kavc . pdb

superpose −Tr −vMC −v82−162 −1wt1kavc . pdb −2wt0kavc . pdb ; mv
de f au l t . pdb wt1kavc . pdb

# Ca lcu l a t e h e l i x geometry us ing h e l i x c a l c : b l ah . pdb −>
b l a h h x . pdb and b l a h h x . tab

#h e l i x c a l c −h ˜/ rc s b /1L63 . pdb mt0kavc . pdb
#h e l i x c a l c −h ˜/ rc s b /1L63 . pdb mt1kavc . pdb
#h e l i x c a l c −h ˜/ rc s b /1L63 . pdb mt2kavc . pdb
#mkdir h e l i x
#mv ∗ hx . pdb h e l i x /
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#Don’ t r e a l l y need the t a b l e s cu r r en t l y
#rm ∗ . tab

# Use magd i f f to genera te magni f ied d i f f e r e n c e s t r u c t u r e s .
magdi f f ”1−162” 5 mt0kavc . pdb mt2kavc . pdb ; mv magdi f f . pdb

mt2kavc .m5. pdb
#magdi f f ”1−162” 5 mt0kavc . pdb mt1kavc . pdb ; mv magd i f f . pdb

mt1kavc .m5. pdb
magdi f f ”1−162” 5 mt0kavc . pdb mt1kavc . pdb ; mv magdi f f . pdb

mt1kavc .m5. pdb
mkdir mag
mv ∗ .m5. pdb mag/

#Store p l o t s in another d i r e c t o r y
mkdir p l o t s

# To avoid confus ion , add current d i r e c t o r y to the t i t l e
# Wil l need to be removed in f i n a l v e r s i on .
cu rd i r =‘pwd‘

#Make the 1−162 MC rmsd p l o t
rmsd ”CA” mt0kav . pdb mt2kav . pdb ; mv rmsd . dat tmp .mt . dat
rmsd ”CA” wt0kav . pdb wt2kav . pdb ; mv rmsd . dat tmp . wt . dat
smooth 1 5 7 tmp .mt . dat > mt . sm . dat #Col 1 : res #, Col 5 i s

d isp lacement , box window 7
smooth 1 5 7 tmp . wt . dat > wt . sm . dat

gnuplot <<EOF
set t i t l e ” $curd i r ”
set key top r i gh t
set termina l p o s t s c r i p t landscape eps enhanced lw 2 ”

He lve t i ca ” 14
set output ” d i f f s . eps ”

set x l abe l ”Residue number”
set y l abe l ”Average C {/Symbol=12 a} displacement ”

p lo t ’mt . sm . dat ’ u 1 : 2 t ”L99A” w l i n e , ’wt . sm . dat ’ u 1 : 2 t
”WT∗” w l i n e

set termina l x11
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EOF

# For some reason , gnup lo t messes up the . eps f i l e s in the
current d i r e c t o r y . . .

#so move the output
mv d i f f s . eps p l o t s /

#Make the 82−162 MC rmsd p l o t
rmsd ”CA” mt0kavc . pdb mt2kavc . pdb ; mv rmsd . dat tmp .mt . dat
rmsd ”CA” wt0kavc . pdb wt2kavc . pdb ; mv rmsd . dat tmp . wt . dat
smooth 1 5 7 tmp .mt . dat > mt . sm . dat #Col 1 : res #, Col 5 i s

d isp lacement , box window 7
smooth 1 5 7 tmp . wt . dat > wt . sm . dat

gnuplot <<EOF
#se t t i t l e ” $curd i r ”
set key top r i gh t
set termina l p o s t s c r i p t landscape eps enhanced lw 2 ”

He lve t i ca ” 14
set output ” c t d i f f s . eps ”

set x l abe l ”Residue number”
set y l abe l ”Average C {/Symbol=12 a} displacement ”
set yrange [ −0 . 0 5 : 0 . 4 5 ]
set xrange [ 0 : 1 6 4 ]
set y t i c s 0 , 0 . 1 , 0 . 4

set l a b e l ”A” at 7 ,−0.03 cent e r
set l a b e l ”B” at 44.5 , −0.03 cent e r
set l a b e l ”C” at 70 ,−0.03 cent e r
set l a b e l ”D” at 86 ,−0.03 cent e r
set l a b e l ”E” at 99.5 , −0.03 cent e r
set l a b e l ”F” at 110.5 ,−0.03 cent e r
set l a b e l ”G” at 119 ,−0.03 cent e r
set l a b e l ”H” at 130 ,−0.03 cent e r
set l a b e l ” I ” at 139 ,−0.03 cent e r
set l a b e l ”J” at 149 ,−0.03 cent e r

p lo t ’mt . sm . dat ’ u 1 : 2 t ”L99A” w l i n e , ’wt . sm . dat ’ u 1 : 2 t
”WT∗” w l i n e ,\

’ SS . dat ’ u 1 :11 n o t i t l e w l l t −1 lw 7 , ’ SS . dat ’ u 2 :11
n o t i t l e w l l t −1 lw 7 ,\
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’SS . dat ’ u 3 :11 n o t i t l e w l l t −1 lw 7 , ’ SS . dat ’ u 4 :11
n o t i t l e w l l t −1 lw 7 ,\

’ SS . dat ’ u 5 :11 n o t i t l e w l l t −1 lw 7 , ’ SS . dat ’ u 6 :11
n o t i t l e w l l t −1 lw 7 ,\

’ SS . dat ’ u 7 :11 n o t i t l e w l l t −1 lw 7 , ’ SS . dat ’ u 8 :11
n o t i t l e w l l t −1 lw 7 ,\

’ SS . dat ’ u 9 :11 n o t i t l e w l l t −1 lw 7 , ’ SS . dat ’ u 10 :11
n o t i t l e w l l t −1 lw 7

set termina l x11
EOF

mv c t d i f f s . eps p l o t s /
rm ∗ . dat

echo ”Generating maps now . ”

# Generate d i f f e r e n c e maps and average them .
# Al l mtz f i l e s and pdb f i l e s need to be in the l o c a l

d i r e c t o r y f o r t h i s to work .

d i f f . com . mt2k 8 mt0k 1
d i f f . com . mt2k 8 mt0k a
d i f f . com . mt2k 8 mt0k b
d i f f . com . mt2k 3 mt0k 1
d i f f . com . mt2k 3 mt0k a
d i f f . com . mt2k 3 mt0k b
d i f f . com . mt2k 1 mt0k 1
d i f f . com . mt2k 1 mt0k a
d i f f . com . mt2k 1 mt0k b

d i f f . com . mt1 5k 1 mt0k 1
d i f f . com . mt1 5k 1 mt0k a
d i f f . com . mt1 5k 1 mt0k b

d i f f . com . mt1k 6 mt0k 1
d i f f . com . mt1k 6 mt0k a
d i f f . com . mt1k 6 mt0k b
d i f f . com . mt1k 7 mt0k 1
d i f f . com . mt1k 7 mt0k a
d i f f . com . mt1k 7 mt0k b
d i f f . com . mt1k 9 mt0k 1
d i f f . com . mt1k 9 mt0k a
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d i f f . com . mt1k 9 mt0k b

# This does the map averag ing f o r the Fo−Fo maps .
# I t r e qu i r e s MAPMAN, a v a i l a b l e from the Uppsala Sof tware

Factory

osx mapman <<EOF

re map1 mt1k 6−mt0k 1−P1 .map ccp4
re map2 mt1k 6−mt0k a−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 6−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 7−mt0k 1−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 7−mt0k a−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 7−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 9−mt0k 1−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 9−mt0k a−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1k 9−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
div map1 9
wr map1 mt1k−0kav .map ccp4
re map2 m2k8 1 . ezd ezd
op map2 ∗ map1
in map2 102 167 −7 72 −21 57

de l ∗
re map1 mt2k 8−mt0k 1−P1 .map ccp4
re map2 mt2k 8−mt0k a−P1 .map ccp4
op map1 + map2
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de l map2
re map2 mt2k 8−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt2k 3−mt0k 1−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt2k 3−mt0k a−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt2k 3−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt2k 1−mt0k 1−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt2k 1−mt0k a−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt2k 1−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
div map1 9
wr map1 mt2k−0kav .map ccp4
re map2 m2k8 1 . ezd ezd
op map2 ∗ map1
in map2 102 167 −7 72 −21 57

de l ∗
re map1 mt1 5k 1−mt0k 1−P1 .map ccp4
re map2 mt1 5k 1−mt0k a−P1 .map ccp4
op map1 + map2
de l map2
re map2 mt1 5k 1−mt0k b−P1 .map ccp4
op map1 + map2
de l map2
div map1 3
wr map1 mt15k−0kav .map ccp4
re map2 m2k8 1 . ezd ezd
op map2 ∗ map1
in map2 102 167 −7 72 −21 57

EOF
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# For neatness , move the P1 maps to another f o l d e r
mkdir P1
mv ∗P1 .map P1/ .
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