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ABSTRACT: The structures of a poly(isoprene-block-ethylene oxide) (PI-b-PEO) block copolymer-directed
aluminosilicate mesostructure and the resulting ceramic material obtained from calcination were studied via small-
angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The PI minority phase (volume
fraction 0.36) formed a continuous network of channels, previously reported1,2 to be consistent with the plumber’s
nightmare3 morphology. The solvent casting process used to form the material caused it to shrink uniaxially by
∼30%, deforming the network structure within it. Calculated structure factors for constant-curvature and constant-
thickness models of a distorted double gyroid structure are consistent with SAXS from the material, while [100]
and [111] projections of the distorted double gyroid structure match the TEM data. Because the structural data
from the material is most consistent with a distorted version of the double gyroid morphology, the previous
assignment of the plumber’s nightmare morphology must be reconsidered. Approaches for structural assignment
are also discussed.

Introduction

A number of bicontinuous network structures have been
identified in soft-condensed matter systems including the double
gyroid4,5 (G), double diamond6,7 (D), plumber’s nightmare3,6

(P), and I-WP4,8 morphologies illustrated in Figure 1. Identifica-
tion of these complex structures can be challenging,9 and a
combination of characterization techniques is frequently re-
quired. Many bicontinuous materials lack long-range periodic-
ity10,11and single-crystal specimens are certainly the exception.9

Space-group assignment is difficult when dynamic and static
disorder smear out all but a handful of diffraction peaks.2,9

Furthermore, some 2-D projections of different network struc-
tures are quite similar in appearance.12-14 Consequently, in some
instances further study of a material has led to a revision of an
earlier structural assignment.12,15,16

This report describes such a re-evaluation for a solvent-cast
poly(isoprene-block-ethylene oxide) (PI-b-PEO) copolymer/
aluminosilicate composite material and the resulting ceramic
obtained from calcination. The thickness of the solvent-cast film
was approximately 0.5-1.0 mm while the volume fraction of
the PI minority phase was 0.36. In an earlier study,1,2 some of
us reported the material’s structure to be consistent with the
plumber’s nightmare (P) morphology and excluded the double
gyroid (G) structure because small-angle X-ray scattering
(SAXS) from the material showed{110} and {200} Bragg
reflections forbidden by the symmetries of the double gyroid
structure (G, space groupIa3d, Q230).17 However, the solvent-
casting process uniaxially compressed the film along the film
normal by∼30%, as illustrated in Figure 2. Compression of a
cubic lattice breaks the screw-axis and glide-plane symmetries

of the Ia3d space-group and{110} and {200} reflections are
no longer forbidden.18,19 Thus, the observation of{110} and
{200} reflections does not rigorously exclude a double gyroid
structure distorted by lattice compression (distorted-G).

To determine if a distorted double gyroid (distorted-G)
structure was consistent with the experimental data, the structural
deformations caused by lattice contraction were calculated for
models of the double gyroid structure with elastic (Gel), constant-
thickness20 (GCT), and constant-curvature20 (GCC) material
properties. Structure factors for these three distorted double
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Figure 1. Unit cells of the (a) double gyroid (G) structure, space group
Ia3d, Q230; (b) double diamond (D) structure,Pn3m, Q224; (c) plumber’s
nightmare (P) structure,Im3m, Q229; and (d) I-WP network structure,
Im3m, Q229. The green IPMS divides space between the gold and blue
skeletal frames, each of which forms a continuous network in all three
spatial directions. Skeletal frames and IPMS were calculated using the
level-set approximation.48
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gyroid models were calculated and the intensity for{110},
{200}, and other reflections agree well with SAXS from the
material. [100] and [111] projections of a distorted double gyroid
structure were also calculated and resemble transmission electron
microscopy (TEM) micrographs from the material. Thus, a
distorted double gyroid structure is consistent with the structural
data from the material, and the previous assignment of a
plumber’s nightmare (P) morphology must be re-evaluated.

Results

Experimental Structure Factors.As reported earlier,2 SAXS
data was gathered from both the initial PI-b-PEO/aluminosilicate
films (as-made) and from mesoporous aluminosilicate (calcined)
produced by calcining these films. A representative 2-D SAXS
pattern is shown in Figure 3a. Distinct Bragg spots are seen in
Figure 3a because the crystallites were quite large1 and so for
any given orientation of the sample, only a small number (∼5)
of crystallites satisfied the Bragg diffraction condition. As shown
in Figure 2, uniaxial contraction of the film during the solvent
casting process caused the Bragg spots to lie on ellipses rather
than circles.2,21 These ellipses would be smeared out by a
conventional azimuthal powder average so structure factors must
be estimated by other techniques. For an individual image, the
intensity of individual Bragg spots were estimated by fitting

the surrounding scattering intensity,I(q,θ), to a Gaussian peak
profile of the form

whereI0 is the integrated scattering intensity,q0 andθ0 are the
radial and angular position of the peak center,qw and θw are
the radial and angular width of the peak, andB accounts for
the background scattering level. Structure factors were roughly
estimated by averaging the intensity per spot for each set of
reflections,{hkl}, and the results of this procedure are reported
in Table 1. However, the small number of crystallites, differ-
ences in the size of individual crystallites, and differences in
how close each crystallite is to the Bragg diffraction condition
make these estimates quite imprecise.

These problems were addressed using a rotation series in
which the sample was rotated to different angles about an axis
perpendicular to the incident beam and SAXS images were taken
at each position. To combine data taken at different rotation
angles, the effect of rotation on the elliptical scattering ring shape
was accounted for. Figure 2 illustrates how contraction along
an axis in real space causes an elongation along the same axis
in reciprocal space so the{hkl} lattice vectors lie on the surface
of a prolate spheroid.2 On a 2-D SAXS pattern, the observed
{hkl} reflections are located at the intersection of this spheroid
with the Ewald sphere as shown in Figure 2c,d.

Figure 2. Effect of sample contraction on reciprocal space structure.
(a) Ideal isotropic case. The orientation of three crystallites in a film is
illustrated below, while the position of the corresponding{211}
reflections in reciprocal space is marked above in the same color. For
a given value ofh2 + k2 + l2, all reflections lie on the surface of a
sphere. (b) Following uniaxial contraction of the film, the unit cell of
individual crystallites also contracts along the film normal. The
reciprocal lattice becomes elongated and reflections with a given value
of h2 + k2 + l2 lie on the surface of a prolate spheroid, as shown for
the {211} reflections. (c) Intersection of the Ewald sphere and the
prolate spheroid of the{hkl} Bragg reflections. (d) Elliptical shape of
the resulting diffraction rings.

Figure 3. (a) Representative 2-D SAXS pattern (calcined material).
The bright{211} Bragg reflections lie on the ellipse marked in black.
The ellipse radii areqmaj ) 0.572( 0.007 nm-1 andqmin ) 0.390(
0.005 nm-1 while the angle between the sample rotation axis (vertical)
and the semi-major axis isθe ) 61.3° ( 2.5°. (b) Pseudo-powder average
obtained by integration of a rotation series as described in the text
(calcined material). The dotted lines indicate even values ofh2 + k2 +
l2 for a cubic lattice with unit cell size ofd ) 39.2 ( 0.8 nm.
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The elliptical shape of the scattering ring is related to the
contraction of the sample by

whereε is the ellipse eccentricity,θe is the angle between the
y-axis and the ellipse semi-major axis,qmin and qmax are the
semi-minor and semi-major ellipse radii,s is the fractional
contraction of the film,θn is the angle between the contraction
axis and they-axis, andφn is the angle between thex-axis and
the projection of the contraction axis in thex-z plane. The
scattering ring has the greatest eccentricity when the X-ray beam
is perpendicular to the sample normal (θn ) 0° and/orφn ) 0°)
and is circular when the X-ray beam is parallel to the sample
normal (θn ) φn ) 90°). As described previously,2 these
equations were fitted to the shape of scattering rings in a rotation
series to determine the size of the unit cell and magnitude of
uniaxial contraction. The as-made material had a unit cell ofd
) 63.3 ( 1.0 nm and a contraction ofs ) 30% ( 3%.
Following calcination, the unit cell reduced tod ) 39.2( 0.8
nm while the contraction wass ) 33.7%( 1.3%. The mean
value of the{hkl} reflections was calculated by averaging the
scattering intensity on the surface of prolate spheroidal shells.
The result of this process was a pseudo-powder average

where the average was taken over the surface of a spheroid
rather than a sphere. Rotation series were used to evaluateI(q),
and a plot for the calcined material is shown in Figure 3b. The
intensity of scattering peaks was determined by fitting the 1-D
scattering profile via nonlinear least-squares to the form,

whereIj andmj are the intensity and multiplicity of thej ) h2

+ k2 + l2 scattering peak,V is the Voigt function,22,23σL0, σL1,
σG0, andσG1 describe the width of each scattering peak, andBk

are coefficients describing background scatter. The resulting
peak intensities for as-made and calcined materials are reported
in Table 1. The{200} reflections show the largest difference
between the pseudo-powder average and Bragg spot estimates,
but this is not surprising given the small number of Bragg spots
(N ) 2).

For both the as-made and calcined material, the{211}
reflections have the greatest intensity followed by the intermedi-
ate intensity of the{220} and{200} reflections while the{110}
reflections are relatively weak.

Model Structure Factors. The double gyroid,24 double
diamond,7 and I-WP25 structures have all previously been
observed in bicontinuous silica-type materials. Table 2 reports
structure factors for double gyroid (G), double diamond (D),
plumber’s nightmare (P), and I-WP structures calculated using
the parametric equations of Garstecki and Holyst.26 There are
distinct differences between the structure factors of the material
and each of these models.

The double diamond (D) structure (Figure 1b) has strong
{110} and {111} reflections and weak{211} reflections. As
the material had weak{110} reflections, no{111} reflections
and strong{211} reflections, the double diamond morphology
is quite unlikely. The main discrepancies for the I-WP structure
(Figure 1d) are its weak{211} reflections, strong{110}
reflections, and relatively strong{310} and{222} reflections.
The structure factors in Table 2 are for the most likely I-WP
structure in which the minority PI phase (volume fraction 36%)
occupies the network of 4-way nodes (gold). Structures with
the minority phase in the network of 8-way nodes (blue), both
networks, or the matrix show no better agreement.27 The
plumber’s nightmare (P) structure (Figure 1c) has strong{110}
reflections because the 6-way nodes are located at the corner
and center of the unit cell. Thus, the plumber’s nightmare
morphology also has difficulty accounting for the experimental
data because the observed{110} reflections were weak. Finally,
a cubic double gyroid (G) structure (Figure 1a) cannot account
for the observed{110} and {211} reflections as these are
forbidden by the symmetries of theIa3d space group.17

Comparison to these cubic structures can be misleading,
though, because the crystallites in the material were triclinic.
Each triclinic crystallite was related to a cubic lattice by a
uniaxial contraction/expansion, but the compressed unit cell
could not have all of the crystallographic symmetries allowed
in a cubic unit cell.18,19 However, depending on how the
contraction affected the structure inside the unit cell, the triclinic
crystallites could still have the same structure factors as a
symmetric, cubic structure. This effect is illustrated in Figure 4
for a 2-D structure with a 4-fold rotational symmetry axis. If
the gray and white domains compress proportionately (linear/
affine transformation) as shown in Figure 4b, the structure
factors are effectively unchanged, even though the rotational
symmetry is broken by the unit cell contraction. In contrast,
the unit cells in parts c and d of Figure 4 have different structure
factors because the white and gray domains have changed shape
relative to the lattice. Thus, a contracted or stretched lattice only

Table 1. Experimental Structure Factors |Shkl|2
as-made calcined

h2 + k2 + l2 {hkl} spotsa powderb spotsa powderb

2 110 0.4 (6) 0.3( 0.1 1.3 (6) 1.5( 0.1
4 200 8.0 (2) 56( 2 6.1 (2) 28( 1
6 211 100 (14) 100 100 (22) 100
8 220 16 (6) 8.1( 0.7 12 (6) 17( 1

10 310 nd (0) 0.0 nd (0) 0.0
12 222 nd (0) 0.0 nd (0) 0.0
14 321 1.6 (8) nd 3.2 (8) 0.7( 0.1
16 400 1.0 (2) nd 3.0 (2) 1.8( 0.4
18 330/411 nd (0) nd nd (0) 0.34( 0.06
20 420 nd (0) nd 2.7 (4) 0.7( 0.1
22 332 0.9 (10) nd 4.7 (12) 2.8( 0.4
24 422 0.3 (2) nd 1.7 (4) 1.3( 0.1
26 431 nd (0) nd 1.2 (2) 0.29( 0.04

a Average Bragg spot intensity normalized to{211} reflections. The
number of spots for each{hkl} is given in parentheses. For some{hkl}, no
reflections were observed as indicated by the letters “nd”.b Fit to “pseudo-
powder” average of scattering intensity made by summing scattering from
a rotation series. The quoted errors are for the nonlinear least-squares fit
and do not include systematic effects. The lower signal-to-noise for the
uncalcined sample meant that reflections with largeh2 + k2 + l2 > 12
could not be reliably distinguished above the background scattering level
as indicated by the letters “nd”.
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shows symmetry-forbidden reflections if the structure inside the
unit cell is distorted relative to the crystal lattice.

Consequently, in some cases symmetry-forbidden reflections
have been observed from block copolymers and mesoporous
silica materials with compressed/stretched double gyroid (G)
structures, while in other cases these reflections were not seen.
For example, Sakurai and colleagues reported the appearance
of {110} and{200} reflections after a double gyroid structure
in a poly(styrene)-b-poly(butadiene)-b-poly(styrene) block co-
polymer was plastically deformed under tension.18 In contrast,
a thin film of bicontinuous silica described by Hayward and
colleagues28 showed only the{211} and {220} reflections of

the Ia3d lattice despite a uniaxial compression of∼15%. In a
more recent study19 of a double gyroid (G) mesoporous silica
film, the as-made structure did not show the forbidden{110}
or {200} reflections (∼7% contraction). However, calcination
caused the film to contract by∼40% and weak{110} reflections
were then observed.

To see if a distorted double gyroid (distorted-G) structure is
consistent with the structure factors of the material studied here,
the structural deformations caused by lattice contraction were
calculated for several models. The rheological properties of this
block copolymer/aluminosilicate material varied during the
solvent casting process.29 Initially, when the solvent content was
high, the material should have been able to flow in response to
applied stress. As the solvent content dropped, the PI and PEO/
aluminosilicate phases separated to form three-dimensional,
interpenetrating networks. Even though the individual polymer
blocks and aluminosilicate particles could still move within their
respective domains, in this liquid crystalline state the domain
topology could not readily change and the bulk material should
have exhibited a solidlike response to applied stress.30 Finally,
as the number of cross-links between aluminosilicate particles
increased, the PEO and PI polymer blocks would have been
immobilized by the three-dimensional network of covalent
bonds within the PEO/aluminosilicate domains. In this heavily
cross-linked state, the response of the material to applied stress
should have been similar to that of an inhomogeneous, elastic
solid.

The response of the heavily cross-linked state to an imposed
strain was approximated using an elastic double gyroid (Gel)
model in which the PI and PEO/aluminosilicate domains were
treated as solids with different elastic moduli. For the intermedi-
ate, liquid crystalline state, constant curvature31 (GCC) and
constant thickness9,13,20(GCT) structural models with the topol-
ogy of the double gyroid structure were used to model the
deformation of the PI and PEO/aluminosilicate domains. As
illustrated in Figures 4c and 4d, contraction during these two
stages of the solvent casting process should lead to different
types of deformation.

Table 2. Structure Factors |Shkl|2 for Model Network Structures

h2 + k2 + l2 Da,b Pa I-WPa Ga Gel
c,d GCC

e,d GCT
f,d as-madeg calcinedg

2 100 100 42 - 0.43 28 23 0.3( 0.1 1.5( 0.1
3 71 - h - - - - - 0.0 0.0
4 6.5 89 100 - 1.0 95 96 56( 2 28( 1
6 1.3 22 1.4 100 100 100 100 100 100
8 0.0 0.0 5.3 38 41 26 77 8.1( 0.7 17( 1
9 0.31 - - - - - - 0 0.0

10 0.47 0.05 8.6 - 0.08 1.2 7.6 0 0.0
12 3.0 0.06 2.5 - 0.0 0.1 0.9 0 0.0
14 0.48 1.4 0.18 0.21 0.21 0.9 3.2 nd 0.7( 0.1
16 0.0 1.1 0.62 0.95 0.92 5.0 2.4 nd 1.8( 0.4
17 2.1 - - - - - - nd 0.0
18 0.57 1.95 0.45 0.08 2.0 1.5 nd 0.34( 0.06
19 1.8 - - - - - - nd 0.0
20 0.0 0.0 1.3 0.06 0.24 2.4 0.7 nd 0.7( 0.1
22 1.6 4.0 0.26 0.07 1.1 3.9 0.8 nd 2.8( 0.4
24 0.0 3.35 0.03 0.23 0.63 1.8 0.5 nd 1.3( 0.1
26 0.0 0.0 0.66 0.18 0.32 1.6 0.3 nd 0.29( 0.04

a Normalized values of|Shkl|2 for the double diamond (D), plumber’s nightmare (P), I-WP, and double gyroid (G) models were calculated using the
parametric functions of Garstecki and Holyst.26 For the double gyroid (G), double diamond (D), and plumber’s nightmare (P) structures the volume of both
networks was 18%. For the I-WP structure, the volume of the 4-fold network was 36%.b The intensity of the{311} and{421} reflections of the D structure
were below 0.1% of the intensity of the{211} reflections.c Elastic model of the double gyroid structure (Gel) following 30% uniaxial contraction. The
majority phase (PEO/aluminosilicate) was taken to be 10 times stiffer than the minority phase (PI), and Poisson’s ratio for both phases was 0. The PEO/
aluminosilicate had a density29 of 1.4 g/cm3, while the PI domains49 had a density of 0.9 g/cm3. d 〈|Shkl|2〉 averaged for contraction along the [100], [110],
[111], and [16,9,4} directions.e Constant curvature model of double gyroid structure (GCC) under 30% uniaxial compression.f Constant thickness model of
double gyroid structure (GCT) under 30% uniaxial compression.g Experimental values determined using pseudo-powder average as reported in Table 1.
h “-” indicates forbidden by crystallographic symmetry.

Figure 4. Structural change induced by uniaxial contraction. When
the circular minority phase (white) and surrounding majority phase
(gray) compress equally (b), the structure factors are essentially identical
to those of the uncompressed structure (a). For an elastic material in
which the majority phase is less compressible, the circular domains
will preferentially flatten as shown in part c. For a liquid crystalline
material, the energy of the interface between the majority and minority
phase favors domains of constant thickness or constant curvature as
shown in part d.
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In an elastic, inhomogeneous material, the spatial dependence
of the material’s elastic properties causes the structure to deform
relative to the crystal lattice. After a contraction, each point,
xk, moves to a new position,Xj(xk), given by

whereMjk describes the bulk compression of the material and
the change in structure within the unit cell is described by the
Fourier amplitudesAj

m for reciprocal lattice vectorsqk
m. The

resulting local strain is given by32

where

Assuming the elastic response is locally isotropic, the stress field,
Sjk(xl), is

where µ(xl) and λ(xl) are the first and second Lame elastic
coefficients32 at pointxl andµm andλm are the corresponding
Fourier coefficients. The elastic energy per unit volume is then

The equilibrium structure can be rapidly determined by
conjugate-gradient minimization33 of this elastic energy. The
Fourier coefficients of the compressed structure are then given
by

where Fc,m and Fu,m are the Fourier coefficients for the
compressed and uncompressed structures for the lattice vector
qj

m. Table 2 reports the structure factors for this elastic double
gyroid (Gel) model. Prior to contraction, the PEO/aluminosilicate
domain was taken to be a constant-thickness membrane (volume
) 64%). Since the elastic properties of the domains change
during the solvent-casting process, the full range of elastic
moduli consistent with thermodynamics was tested. An upper
bound on elastic deformation was estimated by taking the
stiffness of the PEO/aluminosilicate phase to be 10 times that
of the PI phase. As Poisson’s ratio,σ, had a modest effect on
structure factors, Table 2 only reports results forσ ) 0.
Crystallites in the material had a variety of orientations relative
to the strain direction so each structure factor,〈|Shkl|2〉, was
averaged over uniaxial contractions ofs) 30% along the [100],
[110], [111], and [16,9,4] directions. The{110} and {200}
reflections for this elastic double gyroid (Gel) model are
considerably smaller than the measured values.

Because the major and minor domains form interpenetrating
three-dimensional networks, the double gyroid (G) structure can
exhibit a solidlike response to applied stress30 even when the
individual polymer blocks can move within their respective
domains. During the intermediate stages of solvent casting,
imposed strain could have caused relatively large changes in
domain shape (but not topology) because the aluminosilicate
particles and polymer chains were not fully immobilized by a
network of covalent bonds within the PEO/aluminosilicate
domains. The optimal domain shapes for a liquid crystal with
a given unit cell and domain topology can be used to estimate
the rearrangements during this stage of solvent casting. As the
energetic interactions of such a hybrid/copolymer system have
not been quantified, simpler energetic models were employed.

The shape of domain interfaces in block copolymers has
previously been approximated using surfaces of constant
curvature.31 Figure 5 illustrates the effects of compressing a
single gyroid network bounded by a constant-curvature interface
(GCC). As the lattice contracts, each 3-fold connector undergoes
a distinctive distortion and the symmetries of the original
network are clearly broken. For this calculation, the single gyroid
network was described with a triangulated surface (2304 facets
per unit cell) and the surface was then numerically optimized34,35

so as to achieve constant mean curvature under the constraint
of a network volume of 18%.

The Abbe transform13 was employed to compute structure
factors for this single gyroid network. In the general triclinic
lattice, the position of the double gyroid’s second network could
be ambiguous as the glide planes and screw axes of the Q230

lattice constrain its position in the cubic case. However, several
different criteria for positioning the two networks yield indis-
tinguishable structure factors. Figure 6 shows the average value
of the {110} and {200} structure factors for this constant-
curvature double gyroid (GCC) model as a function of contraction
along the, [100], [110], [111], and [16,9,4] directions. The
structure factors rapidly grow as the structure is compressed,
and their average values for a contraction ofs ) 30% are
reported in Table 2.

Network structures in liquid crystals have also been described
using a membrane of uniform thickness centered on an infinite

Figure 5. Deformation of the constant-curvature double gyroid (GCC)
structure (18% volume) undergoing (a) 0%, (b) 10%, (c) 20%, and (d)
30% contraction along the [16,9,4] direction. For clarity, only one of
the two symmetry-related “single gyroid” networks is shown.
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periodic minimal surface (IPMS)9,13,20 where the thickness of
the membrane determines its volume fraction. These “constant-
thickness” models are a good approximation for water-rich,
surfactant bilayer network structures and have also been applied
to the structure of block copolymers.13,26 For this constant
thickness double gyroid (GCT) model, the midplane of the
membrane was described with a discrete surface (1536 facets
per unit cell) and the shape of this surface optimized numerically
to achieve zero mean curvature for each facet.34,35The thickness
of the membrane was then adjusted to give a volume fraction
of 64%, and the positions of the inner and outer membrane
surfaces were computed. Finally, structure factors were evalu-
ated by applying Abbe’s transformation to the discrete repre-
sentation of the inner and outer membrane surfaces.13

Table 2 reports the structure factors for the constant thickness
double gyroid (GCT) model after averaging over contractions
of s) 30% along the [100], [110], [111], and [16,9,4] directions.
As expected, larger structural rearrangements are possible when
material can move within the continuous PI and PEO/alumi-
nosilicate domains. Following a contraction ofs ) 30%, the
structure factors for the{110} and{200} reflections for both
the constant curvature (GCC) and constant thickness (GCT) double
gyroid models are considerably larger than the observed values.
While neither the constant-thickness (GCT) nor the constant-
curvature (GCC) models capture all the details of the copolymer/
aluminosilicate hybrid energetics, they confirm that large
changes in structure factors can occur without changing the
network topology. In summary, the calculations for the elastic
(Gel), constant-curvature (GCC) and constant-thickness (GCT)
double gyroid models indicate that a double gyroid structure
deformed by the solvent-casting process is consistent with the
intensity of the observed{110} and{200} reflections.

Transmission Electron Microscopy. As reported previ-
ously,1,36 thin sections of the as-made and calcined materials
were examined via bright-field TEM and representative micro-
graphs are shown in Figure 7. Bright areas correspond to the
minor phase (PI or voids) while dark areas correspond to the
major phase (PEO/aluminosilicate). Despite some distortion of
the lattice from solvent casting or sectioning, the classic fourfold
( [100] direction) and threefold ( [111] direction) orientations
of a cubic lattice are still evident. The threefold “wagon-wheels”
evident in Figure 7a,c are a common feature of cubic, bicon-
tinuous structures.12

Following a uniaxial contraction, the projected lattice vectors
(a1, a2, a3) of a cubic lattice are given by

whered is the unit cell size,s is the fractional contraction along
an axis,n, and R is a unitary 3× 3 matrix specifying the
orientation of the crystal axes. The unit cell size and minimum
uniaxial contraction are then given by

whereλbig andλsmall are the larger and smaller eigenvalues of
the square matrix,Ap × Ap

T.
The Fourier transform of each micrograph was used to

determine its projected unit lattice vectors and the results are
reported in Table 3. The average lattice sizes (as-maded ) 61
( 5 nm, calcinedd ) 36 ( 3 nm) agree with those obtained
from SAXS (as-maded ) 63.3( 1.0 nm, calcinedd ) 39.2(

Figure 6. {110} and{200} structure factors of a constant curvature
double gyroid (GCC) structure as a function of uniaxial contraction.
Open/closed symbols correspond to the average{110}/{200} structure
factors for compression along the [100] ((), [110] (0,9), [111] (3)
and [16,9,4] (O,b) directions. Structure factors are normalized so|S211|2
) 100 in the uncompressed structure.

Figure 7. Bright-Field transmission electron micrographs (PEO-
aluminosilicate dark/PI or voids bright) of the as-made (top) and
calcined material (bottom) highlighting the (a, c) 3-fold and (b, d) 4-fold
projections of the cubic phase. The Fourier transform of each image is
shown in the corresponding inset. Panel e shows an average of multiple
unit cells of the [111] projection of the calcined material shown in
panel c. Stretching the unit cell back to cubic (panel f) restores the
hexagonal symmetry of the [111] projection. The arrows indicate the
in-plane components of the cubic lattice vectors (a1, a2, a3).

Table 3. Unit Cell Parameters for Micrographs in Figure 7

micrograph
projected unit cell

vectors (nm)

apparent
unit cell
size (nm)

minimum
uniaxial

compression
(%)

as-made [111] a1 ) 45.2x - 6.3y
Figure 7a a2 ) -15.5x + 35.3y 56.2 18

a3 ) -29.6x - 28.9y
as-made [100] a2 ) 63.8x - 16.5y 65.9 5
Figure 7b a3 ) 15.0x + 60.9y
calcined [111] a1 ) 26.6x + 2.0y
Figure 7c a2 ) -10.9x + 15.5y 33.4 33

a3 ) -15.7x - 17.5y
calcined [100] a2 ) 36.3x - 1.4y 38.1 5
Figure 7d a3 ) 0x - 37.7y

Ap ) (a1x a2x a3x

a1y a2y a3y
)) d × (1 0 0

0 1 0)× (1 - s× nnT) × R

d ) xλbig and s g 1 - xλsmall

λbig
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0.8 nm). As shown in Figures 7e and 7f, an average unit cell
could be obtained by summing an array of unit cells and then
stretching this averaged structure back onto a cubic lattice. These
“rectified” unit cells are displayed in Figures 8 and 9. To
compare these images to structural models, projections of the
network structures were evaluated by Fourier summation13 of
structure factors obtained using the parametric equations of
Garstecki and Holyst.26

The [111] projections of the as-made (Figure 8a) and calcined
(Figure 8b) materials both show bright spots at the corners of
the hexagonal cell. Contrast was better in the calcined material,
and in the calcined unit cell the bright spots appear to be joined
together at the center of the cell. The [111] projection of the
double gyroid (G) structure (Figure 8c) has both of these
features, but projections of the plumber’s nightmare (P) structure
(Figure 8d) or I-WP structure do not. Although a projection of
a specific half-unit cell of the double diamond (D) structure13

looks similar to the double gyroid, the standard [111] projection
of the full double diamond structure (Supporting Information
Figure 1) also differs from the experimental micrographs.

The double gyroid structure can also be distinguished in the
[100] projection. Although the [100] projections of all four cubic
network structures (Supporting Information Figure 2) show a
square grid of bright spots,14 the spots in the [100] projection
of the double gyroid structure (Figure 9c) are twice as close
together. In the [100] projections of the as-made (Figure 9a)
and calcined (Figure 9b) material, the spot spacing matches the
double gyroid structure.

Discussion

Of the network structures considered in this study, the SAXS
and TEM data are best described by the distorted double gyroid
structure. First, there are significant differences between the
structure factors of the material and structure factors for models
of plumber’s nightmare (P), I-WP, and double diamond (D)
networks. Modest deformations of these structures do not resolve
these differences. In contrast, the observed structure factors are
consistent with a double gyroid (G) structure deformed by
uniaxial contraction. Second, TEMs of the material differ from
[100] and [111] projections of the double diamond, plumber’s
nightmare and I-WP structures. Instead, the TEMs show the
main features of [100] and [111] projections of the double gyroid
structure. Thus, of all the above structures considered, the
distorted double gyroid (distorted-G) structure is most consistent
with the experimental data.

There are several reasons why the conclusions of this analysis
differ from the conclusions of the original report.1,2 First,
although the contraction of the material during solvent casting
was described, the original analysis assumed the apparent
symmetry of the structure was not altered by the contraction.
On the basis of the present work, this assumption is reasonable
when the contraction is not too large and/or the material deforms
like an elastic solid. However, the large (∼30%) contraction
and possibility that the domains were relatively deformable in
the early stages of solvent casting mean that for this material,
symmetry-breaking effects need to be considered. Second,
because the elliptical and oligo-crystalline character of the SAXS
was difficult to analyze, quantitative estimates of the material’s
structure factors were not made in the original analysis. Finally,
in the original analysis, TEM data were used primarily to
establish the bicontinuous character of the structure and was
compared to skeletal graphs2 rather than the projected density
of structural models. Skeletal graphs illustrate the topology of
bicontinuous structures but the corresponding TEM image can
have quite a different appearance.

Because the double gyroid (G) structure has numerous
symmetry-forbidden reflections, the identification or exclusion
of the double gyroid structure is particularly complicated by
symmetry-breaking effects. The present work illustrates the
advantages of directly comparing experimental SAXS and TEM
data with predictions for a proposed structure. In the past, this
was challenging for morphologies like the double gyroid (G)
because of their complex three-dimensional structures. However,
using a level set description48 and modern scientific program-
ming environments (Matlab, Mathematica, IDL, etc.), it is now
straightforward to visualize complex structures and calculate
the corresponding SAXS and TEM projections.19 Furthermore,
with this approach it is easy to examine variations to structures,
such as deformations of the double gyroid. By comparing the
experimental data to predictions for a given structure, consis-
tency can be directly established.

The original identification of a plumber’s nightmare (P)
structure in this material was surprising since the double gyroid
(G) structure forms in the parent PI-b-PEO copolymer system.37

Figure 8. Averaged unit cells (rectified [111] projection, PEO/
aluminosilicate dark) for (a) as-made and (b) calcined material and
corresponding projections of the (c) double gyroid (G) structure and
(d) plumber’s nightmare (P) structure. The in-plane components of the
cubic lattice vectors (a1, a2, a3) are indicated by arrows.

Figure 9. Averaged unit cells (rectified [100] projection, PEO/
aluminosilicate dark) for the (a) as-made and (b) calcined material and
corresponding projections of the (c) double gyroid (G) structure and
(d) plumber’s nightmare (P) structure. The [100] projection of both
the double gyroid structure and plumber’s nightmare structure form a
square pattern of bright spots (PI phase), but the spots are twice as
close in the double gyroid structure. Arrows mark thea2 anda3 cubic
lattice vectors.
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In bicontinuous block copolymer structures, the minority domain
occupies the channels and nodes of the network. The entropic
penalty for stretching the chains of the minority block to the
center of each node favors the double gyroid structure (3-fold
nodes) over the double diamond (4-fold nodes) and plumber’s
nightmare structures (6-fold nodes).38 Consequently, for pure
block copolymers only 3-fold networks have been predicted39-41

or observed.5,42-44 Chain stretching in a 4-fold or 6-fold node
can be reduced by the presence of a second component that
occupies the center of the node. For example, adding homopoly-
mer to the minority phase of a diblock copolymer is predicted
to stabilize the double diamond morphology.38 The ceramic
component in a block copolymer-ceramic material may act in
a similar fashion and nodes with more than three arms were
observed in a PI-b-PEO/aluminosilicate composite in which the
PEO/aluminosilicate phase occupied the channels of a network
structure.45 Also in a calcined PI-b-PEO/aluminosilicate material
with a PEO/aluminosilicate minority volume fraction of 0.36,
SAXS was clearly inconsistent with a gyroid.46 In contrast, in
the material described in the present study, the aluminosilicate
sol particles and PEO block form the membrane separating the
two PI networks of channels and nodes. Since the aluminosili-
cate particles cannot directly relieve frustration in the PI nodes,
a structure with 3-fold nodes should be favored, in agreement
with the reanalysis of the material’s structure.

Finally, the present work relies on structural models to
interpret the experimental data. The selection of these models
introduces implicit assumptions about the symmetry and struc-
ture of the material. Furthermore, even if a given model is
consistent with all the experimental data, there is no guarantee
it is unique. Methods that directly determine the structure of a
material, such as 3-D electron tomography,11,47 avoid many of
these difficulties. Since this PI-b-PEO/aluminosilicate material
is well suited to 3-D electron tomography, it would be very
interesting to study the material with this technique in the future.

Conclusion

The solvent-casting process used to prepare this material
caused the cubic, bicontinuous network structure within the
material to undergo a uniaxial contraction of∼30%. Some of
the symmetries of the original cubic structure could have been
broken by this contraction and so the observed{110} and{200}
reflections do not exclude the double gyroid (G) structure. SAXS
from the material is consistent with structure factors for constant-
curvature and constant-thickness models of a distorted double
gyroid (distorted-G) structure. Furthermore, [100] and [111]
projections of the double gyroid structure match the TEM data.
Thus, a distorted version of the double gyroid (G) morphology
is consistent with SAXS and TEM data from this material.
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