
ESAPS Materials: 

Supporting Online Materials include 1) Time-evolution of transonic and supersonic fuel jets and 
shock waves generated by them quantitatively visualized by microsecond x-radiography in avi 
format; 2) Description of reconstruction of gas mass distribution in Mach cone; 3) Methods of 
multiphase computational fluid dynamics simulation; 4) Multiphase computational fluid 
dynamics simulation results of shock waves generated by liquid fuel jets injected at 40, 100, and 
135 MPa in a form of animation; and 5) Calculation of conservation of excess gas mass near the 
shock-wave front.  

Supplementary Material #1: Time-evolution of transonic and supersonic fuel jets and 
shock waves generated by them quantitatively visualized by microsecond x-radiography. 

SM #1.avi. 

 

Supplementary Material #2: Reconstruction of gas mass distribution in Mach cone  

The x-radiographs of the shock wave line-of-sight projection are quantitative; one can use 

single-projection reconstruction methods to calculate the gas distribution near and inside the 

cone based on an axial symmetric mode illustrated in Figure SM1. For monochromatic x-rays 

transmitting through a nonuniformly distributed material, the analysis of the transmission of the 

attenuating material is straightforward, given by 0 exp( )MI I Mμ= − , where I and I0 are the 

transmitted and incident x-ray intensities, respectively; µM  is the mass absorption coefficient, 

which can be measured and calibrated accurately for the absorbing medium (ambient gas) at the 

single wavelength; and M is the mass of fuel in the beam. Thus, the time evolution of the 

measured x-ray transmission 0I I can be simply transformed into integrated, line-of-sight fuel 

mass data at each point in the radiograph. The Mach cone is illustrated in Figure SM1a, where 

the cone angle is α, depending on the jet leading-edge speed.  The calculated gas density 

distribution can be used to compare with the results from the CFD simulation. Due to the low 

signal-to-noise ratio of the absorption data, it is only possible to use a model-dependent 

reconstruction rather than the conventional single-view tomographic reconstruction techniques.  

The following assumptions are used in the reconstruction: 1) the gas distribution is 

axisymmetrical; 2) the cross-sectional distribution of the compressed gas is composed of two 

Gaussian distributions (inner and outer sides) with two respective widths; 3) inside the Mach 



cone (behind the shockwave front) the excess gas density is negative, indicating a decompression 

region near the cone axis; and 4) the peak gas density at each cross section decreases linearly 

with the distance to the cone tip.  Referring to Figure SM1, therefore, the gas densityρ r,z,t( ) 
near the cone, in polar coordinates, is described by  
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( )where  is the peak density at the cross section at an axial distance at z with (0 ,z tρ ) 0
1,z t
z
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 is the decompression offset inside the Mach cone near the axis, and ( ,ρ− )z t 1σ  and 2σ are the 

Gaussian width on the inner and outer sides of the cone, respectively. Since the x-radiography 

images were produced with parallel x-ray beam along the x-direction in Cartesian coordinates, 

the projected 2-dimensional gas mass distribution ( ), ,M y z t  in the y-z plane can be obtained by 

integrating the density along the x-direction, ( ) ( ), ,, ,M y z t A= r z t dxρ∫ , where  is a constant 

related to the pixel size of the detector.   

A

The so-calculated ( , , )M y z t

( ),z t 1

 was fit to experiment radiography data to yield the fitting 

parameters , , ( )0 ,z tρ ρ− σ , and 2σ , which describe the reconstructed gas distribution. We 

note that it is absolutely necessary to include ( ),z tρ−  in the model. Otherwise, it would be 

impossible to fit the radiographic data on the inner side of the Mach cone.  



 

Figure SM1. Model-dependent reconstruction of the gas density near the Mach cone: a) 
coordinate systems associated with the model, b) gas density model at a cross section 
perpendicular to the cone axis. 

 

Supplementary Material #3: Multiphase computational fluid dynamics simulation 

Gas phase equations 

The governing equations for the gas phase in the numerical simulation are the two-

dimensional Euler equations in axial symmetric geometry. The vector form of the equations is 

given by 
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where x and y≥0 are the axial and radial coordinates, respectively; and t is the evolution time of 

the jet. The flow variable vector u , the flux vectors ( )uF  and ( )G u , the source term ( )uH  due 

to axial symmetric geometry, and ( )S u  the exchange term between the gas and moving particles, 

can be described as: 
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where ρ, u, v, p, and E represent density, axial velocity, radial velocity, pressure, and total 

specific  energy for gas phase, respectively. The total specific energy E is defined as 

( 2 21
2 )E e u v= + + ,        (3) 

where /( 1)e p γ= −  is the internal energy of the gas phase, and vp c/c=γ is the capacity ratio 

between specific heats.  

The exchange coupling terms on the right-hand side of the governing equation account 

for the particle interaction effects for each individual conservative equation. In the continuity 

equation, which is the first component in Eq. (1), there is no source term since we assume non-

evaporating spray. Mx and My in the momentum equations are the terms defining the momentum 

exchanges in the x and y directions between the spray and gas per unit volume. In addition, the 

term Qe in the energy equation represents the energy exchange between the droplets and the gas 

phase accounting for total energy, heat transfer, and heat of vaporization. Here, kinetic energy 

due to the supersonic speed of the spray was considered. As a result, the source terms in the 

momentum and energy equation can be summarized by taking ensemble averages in each control 

volume if an individual particle is labeled by subscript k: 
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where the summations represent the total number of particles in the calculation cell, δ(x) is the 

Dirac delta function, and  is the drag function, which will be described in the spray 

equation. 

( )kD u

Dispersed phase equations 

In a Lagrangian reference frame, each computational particle, individually labeled by 

subscript k, represents a number of droplets with the same size, position, and velocity. This is 



required in the discrete particle method described in detail in [20]. As a result, the required 

equation to trace the position for each individual droplet is given by 

k
k
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= .         (6) 

Next, the droplet velocity at an arbitrary time instant is determined by solving its momentum 

equation as 

( )( )k
k k k

dum m g D u u
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= + − ku .      (7) 

Here, 34( , where  is droplet radius)3k km r rπρ=  is the droplet mass,  is the 

standard gravity for droplets, and we assume no turbulent effects on the droplet trajectory, i.e., 

no turbulent dispersion. In addition, 

( )29.8 /g m s≈

( )kD u  is the drag function 

( ) 21
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In Eq. (8), the drag coefficient DC  is determined as 
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where  is the particle Reynolds number, which is evaluated by using the relative velocity 

between the gas and the droplet, i.e., 
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Note that in the present study, Eqs. (6) through (10) are used to simulate the shock-wave 

generation in conjunction with the gas phase equations. 

Numerical scheme 

The space-time Conservation Element Solution Element (CESE) method [19] has been 

applied to solve the spray-shock interaction flow. The space-time CESE method is a high-

resolution and genuinely multidimensional method for solving conservation laws. It has a solid 

foundation in physics such as local and global flux conservation in space and time and yet is 

mathematically simple. Its nontraditional features are: (i) a unified treatment of space and time, 



(ii) the introduction of a conservation element (CE) and a solution element (SE) as the vehicles 

for enforcing space-time flux conservation, and (iii) a time marching strategy that has a space-

time staggered stencil at its core and, as such, can capture shocks without using Riemann solvers. 

Note that conservation elements are non-overlapping space-time subdomains introduced such 

that (i) the computational domain can be filled by these subdomains, and (ii) flux conservation 

can be enforced over each of them and also over the union of any combination of them. On the 

other hand, solution elements are non-overlapping space-time subdomains introduced such that 

(i) the boundary of any CE is covered by a combination of SEs, and (ii) within an SE, any 

physical flux vector is approximated using a simple smooth function. 

 
Supplementary Material #4: Multiphase computational fluid dynamics simulation results 
of shock waves generated by liquid fuel jets injected at 40, 100, and 135 MPa in a form of 
animation. 
 
SM #4.avi.  
 
 
Supplementary Material #5: Conservation of excess gas mass near the shock-wave front. 
 

 To further examine the conservation, we randomly selected several snapshots in time from 

the numerical simulation. Referring to Figure SM2, the interaction of the excess gas density for 

compression (+ sign) and decompression (- sign) areas was conducted from the shock front to the 

nozzle exit (x = 0 mm) in three-dimensional space. The range in the radial direction was chosen 

from 1 to 5 mm from the jet axis where most of the excess gas mass was accounted for.  

 



 
Figure SM2. Integration schematics of the excess density for the compression and 

decompression areas generated by shockwave at y = 2.55 mm from the spray axis at time 177 

μs after SOI and injection pressure of 100 MPa. 

 Table 1 shows the results at 146, 161, 177, and 183 μs after SOI. The conservation between 

compression and decompression is demonstrated with very slight residuals.  

 

 

Table 1. Gas density integrated in three dimensions at an injection pressure of 100 MPa 

Time after 
SOI 

Compression density

× 10-7 kg/m3 

Decompression density 

× 10-7 kg/m3 

Residual 

% 

146 μs 1.25 -1.31 -5.98 

161 μs 1.54 -1.62 -7.79 

177 μs 1.88 -1.97 -9.74 

183 μs 2.06 -2.16 -1.07 

 


