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a b s t r a c t

A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by

integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along

with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC)

layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits

streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can

be allocated to perform user defined tasks on the pixel data streams, including the implementation of a

direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the

front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude

when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA

implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been

designed and simulated. A 16�16 pixel prototype of the ASIC has been fabricated and is being tested.

& 2012 Published by Elsevier B.V.
1. Introduction

The development of new ultra-fast, ultra-bright X-ray sources
is creating many new experimental opportunities. Fully exploiting
these opportunities requires detectors that are designed to
complement the capabilities of these sources [1]. This drives the
development of pixel array detectors (PADs) (Fig. 1) that take
advantage of direct conversion of x-rays in semiconductors,
which provides high spatial and temporal resolution with good
signal-to-noise ratio [2–5]. Additionally, the ASIC layer offers a
flexible platform for development of in-pixel signal processing.

Offline computer-based post processing of the acquired data
requires that the massively parallel PAD output be serialized and
formatted for readout before new data can be acquired. This results in
a bottleneck at readout, significantly reducing the speed of imaging
while simultaneously producing a potentially voluminous amount of
stored data, especially for time resolved experiments [6]. On-chip
data storage has successfully been used for very high speed applica-
tions [3,7] but in-pixel memory is limited. Increasing the complexity
of the ASIC pixels to allow for real-time processing would result in
complicated and potentially larger pixels. Most importantly, this
would lead to PADs specifically tailored to particular experiments.
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While this has merits in some cases, the developmental lead time for
PADs is on the order of 5 years, making it impractical and expensive
for many applications.

The FPGA PAD seeks to solve this problem by adding a re-
programmable layer to the existing PAD structure (Fig. 1). This
fundamentally changes the data collection paradigm by providing
high-bandwidth, low-level data processing that occurs within the
detector prior to readout. The FPGA PAD thus consists of a traditional
two-layered PAD with fast, simple photon-counting pixels outputting
single bits at high speeds through a massively parallel interface to an
FPGA. This makes the FPGA an integral resident part of the detector,
rather than just a part of the control hardware.

By processing data in real time, the rate at which data is
transferred to storage is reduced dramatically while the desired
information content is efficiently extracted from the measure-
ment. The FPGA can be reprogrammed to meet the needs of
various applications, effectively creating a functionally new
detector without the need to redesign the ASIC. This reduces the
cost and lead-time required to adapt the detector for use in other
experiments. A preliminary design of the FPGA PAD is presented
with an example implementation of a real-time autocorrelation
calculation.
2. System description

The FPGA layer consists of a high-end Xilinx Virtex6 or Virtex7
FPGA with a large I/O pin count that mates to the ASIC layer. The
FPGA contains a sequential logic control unit (state machine) and
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Fig. 1. Conceptual design of the FPGA PAD. A traditional PAD consists of a diode layer bump-bonded to an ASIC processing layer. The pixelated diode layer converts x-rays

into charge. In the case of the FPGA PAD, photon hits are digitized into single bits in the ASIC and streamed through a massively parallel interface directly into the FPGA

pins for processing. Through-silicon vias would enable high pin count connections between a large ASIC and the FPGA. The initial prototype detector does not require this

feature.

Fig. 2. Pictorial representation of a single pixel gang within the ASIC layer of the 16�16 FPGA PAD. The outputs of all of the 16 pixels in a row are fed into the pixel gang

interface and streamed out serially to the FPGA.

Table 1
Design goals.

X-ray count-rate 10 MHz/pix

Detector layer 300–500 mm thick silicon

Quantum efficiency 498% (at 8 keV)

Energy range 2–20 keV

Tile array format 128�128 pixels (using through-silicon vias)

Pixel size 150 mm�150 mm

Pixels per ganged output 32 (16 for prototype)

Imaging modes 4 bits/pixel @ 625 kHz frame rate

10 bits/pixel @ 10 kHz frame rate

16 bits/pixel @ 150 Hz frame rate

Time autocorrelation

function range

40 point log scale 100 ns–1 ms in FPGA.

41 ms to use concurrent imaging mode for

off-chip ACF.

M.S. Hromalik et al. / Nuclear Instruments and Methods in Physics Research A 701 (2013) 7–168
interface design to handle the read-out of data from the ASIC. The
remaining FPGA resources can be used to configure application-
specific computation. A commercial FPGA was chosen as the back
layer to enable development of application specific configuration
modes by the end-user.

The interface between the ASIC and the FPGA layer determines
both the speed and the degree of flexibility of the detector.
Because the number of pins available for I/O on a commercial
FPGA is limited, there cannot be a one-to-one mapping of ASIC
pixels to FPGA pins. Instead, one FPGA pin is the I/O point for a
group of pixels, hereby referred to as a pixel ‘‘gang’’ (Fig. 2). The
readout of each pixel gang is event-driven, meaning that a gang of
pixels is only read if one of the pixels in the gang detects an x-ray
photon. The pixel gangs operate asynchronously and indepen-
dently. The close physical proximity of the ASIC and FPGA layers
reduces signal degradation, cross-talk, and transmission line
effects associated with longer traces. This results in a highly
parallel, asynchronous interface running at very high speeds.

Specifications for the FPGA PAD are shown in Table 1. The PAD
is characterized by the fast x-ray count rate, the broad energy
range of operation and the ability of the FPGA PAD to function as a
high-speed imager. A full detector is envisioned to be constructed
from 128�128 pixel tiles, each of which will be mated to a single
Virtex7 FPGA. Each pixel gang consists of 32 pixels connected to
one of the 512 FPGA I/O pins. The high pin count in this
configuration requires the usage of through-silicon vias in the
ASIC layer.
3. 16�16 Prototype

A 16�16 pixel prototype FPGA PAD ASIC has been fabricated
to test the performance of the pixel front-end, several different
configurations of the interface between the ASIC and the FPGA
layer, and the functionality of the first example application: an in-
detector autocorrelation function for XPCS experiments [8]. The
only layer that is application specific in this description is the
FPGA layer which is shown configured to calculate an autocorre-
lation function in real time.

3.1. Diode layer and XPCS

The 150 mm�150 mm pixel size in the prototype was chosen
to utilize existing diode parts during initial prototyping. This size
also allows ample space for pixel electronics, and matches the
pixel gang area to the FPGA pin density.

In the longer run, smaller pixel sizes are often desirable to
better match the speckle size with the pixel and achieve the
maximum contrast in the speckle signal. Detailed analysis of
contrast and SNR is needed to determine the best setup for a
particular experiment [10]. Though the solid angle covered by a
pixel can be decreased by increasing the distance between sample
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and detector, existing beamlines are often constrained in this
regard [9].

To reduce the effective size of a large PAD pixel, pixelated
x-ray opaque masks have been proposed with an aligned hole
over each pixel. Alternatively, a ‘‘double-bonded’’ diode pixel
(Fig. 3) could be used where the diode pixel has two bump-
bonds connecting it to its corresponding pixel in the ASIC layer
with appropriate switching circuitry. Charge could be collected
from either the smaller central region or the full area. There is a
ca. 20 mm wide charge sharing region at the boundary of the sub-
pixel. Charge sharing is generally not desirable if one seeks to
measure the x-ray spectra, but for monochromatic radiation as
would typically be used in photon correlation spectroscopy,
setting a threshold at 50% of the incident x-ray energy will record
all x-rays falling within the smaller sub-pixel. Further, one could
adjust the effective size of the sub-pixel by increasing or decreas-
ing the threshold from the nominal 50% value.

3.2. ASIC layer

A 16�16 pixel prototype of the ASIC layer was fabricated
through the MOSIS service using the 0.25 mm TSMC 5-metal
mixed-mode process using thick-oxide 3.3 V transistors. The
majority of NMOS transistors use radiation-hardened linear
techniques [11]. It includes a 16�16 pixel array, with 16 gangs
for testing in conjunction with the data analysis FPGA, and a 17th
row with physical test points incorporated within the pixels.
Smaller 
central pixel

150 μm X 150 μm pixel

Separate bump-bonds to 
corresponding ASIC layer pixel

Fig. 3. Double bonded diode pixel. Switches within the ASIC layer pixel connect as

input either the central smaller pixel alone or in combination with the larger

surrounding diode area. The larger surrounding area would be shunted to a

reference voltage if not connected as input.
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Fig. 4. High level schematic of a single pixel in the 16�16 FPGA PAD prototype. In sin

photon at the front end which exceeds a settable threshold. In two-bit mode, one of tw

the high threshold is exceeded.
3.2.1. The pixel

Fig. 4 shows the single-pixel schematic, comprised of the
integrator, DC feedback circuit, low and high energy comparators
and in-pixel latches. The DC feedback circuit compensates for
dark current in the sensor [12]. A small bleed current is mirrored
into each pixel by M1 and M2 to compensate for upto 1 pA
leakage current in the sensor. The integrator is a differential-input
folded cascode. In simulation, the sensitivity is found to be
26 mV/e� with a power draw of 97 mW per pixel. A 3-bit trim
circuit adjusts the threshold of the comparator in each pixel.
Increasing the number of trim bits will be addressed in future
submissions. Fig. 5

CF is chosen to be 5 fF to achieve good single-photon gain and
is implemented as a bulk-connected PMOS device. The reset (RST)
signal is individually generated for each pixel after gang readout
is initiated, such that a pixel is only reset if it has registered a
photon. Since resetting the integrator involves a small amount of
charge injection, this selective reset avoids perturbing the input of
pixels that have not registered any hits.
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gle-bit mode, it produces a one-bit output indicating the presence or absence of a

o bits is set if the photon energy exceeds a lower threshold. The second bit is set if

Fig. 5. Single pixel layout of prototype ASIC. Analog components, at top, include

the integrator (2) flanked by high-energy (1) and low-energy (3) comparators. The

remaining area is occupied by the bond pad (8) and digital components: in-pixel

latches (4), 8 bits of in-pixel memory for trim and test bits (5), pixel reset logic (6),

and pixel register logic (7).
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readout period are buffered in the in-pixel latch. This design allows data to be transferred to the FPGA with no dead time at a time resolution of 100 ns.
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3.2.2. Data handling

Pixels are ganged together by row for communication with the
FPGA. In the prototype ASIC, a gang consists of 16 pixels and a data
handling block. A simplified block diagram is shown in Fig. 6. The
high-energy comparator and latch are omitted. The output of the low-
energy in-pixel latch for all pixels in the gang is fed via tri-state logic
onto an event trigger line. When a photon event is registered by any
pixel, the event trigger line goes high and initializes a readout
sequence. The clock generation block contains a voltage controlled
oscillator (VCO) which is disabled until gang readout is initialized. The
user can also choose to route an external clock signal to all gangs. On
readout initialization, a counter is triggered. After one counter cycle
the gang reset signal is generated. This resets all integrators, in-pixel
latches and data handling elements to prepare for the next incoming
photon. A single read cycle will take �100 ns. As long as the
incoming photon rate is not greater than 1 photon/100 ns/pixel, every
photon incident on the diode and counted in the ASIC layer will be
transferred to the FPGA for processing. The detector has no dead-time
for readout and can discriminate photons arriving at different times
to a minimum resolution of 100 ns.

There is also an option, not shown in the simplified diagram, to
read out the high-energy comparator data in addition to the low-
energy data, at the cost of doubling the readout time.

3.2.3. Testing ASIC electronics

Two methods of testing the electronics of the 16�16 array are
built into the ASIC. To test the basic functioning of the data
handling and readout, a digital test pattern is loaded into the pixel
latches and a readout cycle is triggered by an external signal. To
test the complete system including the pixel front-end, an analog
test pattern is generated by use of an in-pixel charge injection
circuit. The amount of charge injected is controlled by a global
analog voltage and the duration of a digital charge inject pulse.
Charge inject pulses are applied along pixel columns, perpendi-
cular to the gang direction, so that only 16 bond pads are used but
each pixel in a gang can have a unique test signal applied.
Additionally, the prototype chip can be bump-bonded to a diode
array so the bonded unit can be tested with x-rays.

3.3. The FPGA layer

The FPGA layer in the prototype consists of a Xilinx Virtex6
550T FPGA with 16 input pins closely connected to the ASIC layer
output pins. Each of these pins is an interface to one of the 16-
pixel gangs between the ASIC and the FPGA. Since all the pixel
gangs are independent, there is a controlling state machine for
each input data pin on the FPGA. This interface is application
independent and will remain the same for all processing config-
urations of the FPGA layer.

The communication between a pixel gang and the FPGA is
diagramed in Fig. 7. Detection of a photon event anywhere within
the gang triggers an event-driven readout cycle. The interface pin
of the gang sends a rising edge trigger followed by a bitstream
with ones in the positions of pixels receiving photons. The FPGA
input state machine deserializes the input pattern to determine
which pixels have been hit from the position of the ones in the
bitstream.

Two clocking methods are used for transmitting data from the
ASIC to the FPGA. The first uses a tunable oscillator built into the
data handling portion of each pixel gang. These oscillators are set
to the same frequency as internal oscillators built within the FPGA
fabric. This is an elegant, low-power, and potentially high-speed
(upto 500 MHz) solution which requires no master clock. The
oscillators must be tuned to each other—a task that may become
tedious for large numbers of pixel gangs. Also matched oscillators
on both the FPGA and the ASIC may drift in frequency with
temperature. The second method uses an external clock to buffer
and read out the data. This method, though simpler, is slower
than the fastest speed possible with the matched oscillators and is
susceptible to clock skew.
3.4. Example application—Autocorrelation for XPCS

One experimental application which illustrates the advantages
of the FPGA PAD is x-ray photon correlation spectroscopy (XPCS).
This technique exploits the interference of a coherent beam to
study the dynamics of a sample. Correlations within the sample
produce a unique pattern of speckles. Observing how these
speckles change yields information about particle dynamics. In
the appropriate geometry, a 2-dimensional detector array can be
used to observe the time variation of speckles by identifying
appropriate regions of interest in the scattering and tracking pixel
outputs. The pixel output yields a measurement of incident x-ray
intensity varying as a function of time. A description of this time-
varying pixel output is given by second order coherence g2, also



Fig. 7. Interface between a 16-pixel gang on the ASIC layer and the FPGA layer input pin. The one-bit pixel readings are serialized for transmission to the FPGA and

deserialized within the FPGA interface. Each pixel gang interface is asynchronous and independent of the others.
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referred to as the time autocorrelation function (ACF) [8]

g2 q; tð Þ ¼

Z 1
t ¼ 0

IðtÞI tþtð Þdt ð1Þ

A detector for XPCS should have adequate spatial resolution,
the ability to distinguish single photons, and sufficient time
resolution to study dynamics of interest [14]. It is also desirable
to have a detector that covers a large solid angle [13]. The
combination of these requirements (effectively requiring large
and high-resolution coverage of signal, time and space) implies an
information rate which is demanding for a typical framing
detector (defined as a detector that produces images by digitizing
all pixels, and conveys this information to be stored on some
medium). The time scales of dynamics being studied by a framing
detector are limited by the continuous frame rate.

The FPGA PAD addresses this problem by real-time processing
of incoming pixel data. A discrete form of the ACF is calculated as
the pixels respond to single incoming photons

g2 q; jDtð Þ ¼
XN

i ¼ 1

XiðtÞXi tþ jDtð Þ ð2Þ

where Xi(t) and Xi(tþ jDt) are both either 0 or 1. This is calculated
within the FPGA backend and the processed ACF data is then
transferred to the controlling computer. The time resolution is not
limited by the frame rate, but by the gang response time.

3.5. FPGA layer implementation of the ACF

A conceptual implementation of a four-point delay line ACF
calculation is shown in Fig. 8 for a single pixel output [15]. The
pixel output is clocked in by the master clock and compared to its
previous values over 4 different delays. When there is coincidence
(correlation), the relevant counter is clocked. The outputs of these
counters are the four ACF values.

Using this scheme for, say, 10,000 time points from 100 ns to
1 ms is not achievable for a 128�128 pixel array due to limited
resources within the FPGA. A system of levels is used instead to
calculate the ACF within the FPGA.

3.5.1. Level 1 ACF calculation

The first level calculates the ACF using the streaming bitwise
sum of products method from Eq. (2). Since the interface with the
ASIC layer combines 16 pixels into 1 FPGA input pin, each 16-
pixel gang is calculated using the same chain of latches. The input
bit of each of the 16 pixels is therefore processed sequentially.
The shift registers built in to the slices of the Virtex6 FPGA
(SRL32CE) are used to minimize area usage and the ACF for each
pixel for each time delay (jDt) is accumulated and stored as a
running 32-bit sum in on-chip block RAM (Fig. 9). This is
implemented for each time delay from 100 ns to 1 ms for all the
pixels on the 16�16 prototype. This uses less than 2% of the
Virtex-6 FPGA resources.

3.5.2. Level 2 ACF calculation

While time delays ranging from 100 ns to 1 s are desirable in
time-resolved experiments because they measure dynamics over
a long range of time, resolution of 100 ns is not required for the
entire time-scale. Sampling on a log scale with 10 time delays per
order of magnitude may be an appropriate distribution of
resources. To achieve this, the signal would ideally be sent
through a delay line, with its fundamental delay element
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increasing in size logarithmically and the coincidences captured
at appropriate intervals. To mimic this, a system of FIFOs was
used to buffer the incoming 100 ns pixel bitstreams and delay
them (Fig. 10). FIFOs of 10 positions long were used as buffers to
realize a log scale ACF from 1 ms to 10 ms. 100-word long FIFOs
were used as buffers for the 10 ms to 100 ms intervals and 1000
word FIFOs were used for 100 ms to 1 ms intervals. This resulted
in a 30-point ACF over the range of 1 ms to 1 ms and used o20%
of the XC6VLX550T Block RAM resources.
3.5.3. Level 3 ACF calculation

In the 16�16 pixel prototype, an accumulator sums the
number of photons per pixel every 1 ms. This data is stored in
on-chip RAM and can be transferred to the controlling computer
for offline computation of the ACF for times greater than 1 ms. At
this level, the FPGA PAD acts as a 13-bit photon-counting imager
framing at 1 KHz.
While this functionality is useful in different applications and
does not produce voluminous data for a 16�16 pixel array,
performing the ACF calculation on-chip will prove very useful to
reduce the amount of data transferred for a 128�128 pixel array.
Full microprocessors can be implemented directly into the fabric
of the FPGA logic (e.g., Xilinx core MicroBlaze). Using FPGA-based
microprocessors to calculate the ACF for slower time-lags will be
investigated.
4. Testing of ACF application on FPGA backend of 16�16
prototype

The functionality of the interface and the FPGA processing
layer was tested using the Xilinx Simulator using both functional
and timing simulations.

16 parallel input bitstreams were fed into the testbench
interface from data files generated in MATLAB representing test
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functions with different time autocorrelations. The computed
autocorrelation data generated from the simulated FPGA PAD
was sent back to the testbench interface and stored as data files.
These were then compared to the expected ACF for the specific
test function.

4.1. Testing procedure

Three different types of input functions were tested
1.
 A pseudo-random input bitstream (to mimic white noise)
which should have a flat autocorrelation function output for
all time delays (jDt).
2.
 An input bitstream with a periodic correlation function was
emulated using a sine-squared wave probability density func-
tion. A bitstream of ones and zeros was generated from this
probability density function at a sampling period of 100 ns.
Bitstreams of 60 ms duration were generated using several
different frequencies of the sine squared wave.
3.
 An input bitstream with a decaying ACF with characteristic
time and decay exponent was emulated by creating a prob-
ability density function from a series of Gaussian distributions
(Gaussian events) of known variance which were distributed
randomly in time. Distributions with different population
densities and different Gaussian widths were tested. Bit-
streams of sample period 100 ns were created from these
parent probability distribution functions over a 60 ms interval
for Fig. 13(a and b) and over a 600 ms interval for Fig. 13(c).
5. Results and discussion

Figs. 11–13 compare the results from the FPGA calculation
(open circles) and the ACFs calculated in software from the full
bitstreams (black curves). Inset in the figures are a portion of the
parent probability distribution function from which the input
bitstream was created. The software results were calculated for
every 100 ns interval between 100 ns and 1 ms. The FPGA PAD
outputs 40 data points on a log scale from 100 ns to 1 ms. The
FPGA PAD simulated output agrees with the full ACF calculation
at every computed point. Also shown in Fig. 13(a–c) is the
theoretical ACF for a single Gaussian event. The simulated FPGA
PAD output agrees well with these curves, yielding the expected
lineshape and characteristic time for each curve.



Fig. 11. White Noise ACF—The simulated FPGA PAD ACF output (open circles)

is compared with the software-computed ACF output (black curve) from 100 ns

to 1 ms for a pseudo-random white noise input, showing the expected flat

response.

Fig. 12. ACF with periodically distributed input events. The probability density

function (inset) follows a sine-squared function and was used to generate an input

bitstream. The simulated FPGA PAD ACF output (open circles) is compared to the

full ACF computed in software (black curve) from 100 ns to 1 ms on a log scale.

The input sequence in (a) has a characteristic period of 0.833 ms (600 Hz sine

squared wave) while the sequence in (b) has a period of 8.33 ms (60 kHz sine

squared wave).

Fig. 13. ACF with characteristic decay time. Probability density functions (insets)

were constructed from multiple Gaussian peaks of fixed width which

were distributed randomly in time. The ACF output from the simulated FPGA

PAD (open circles) from 100 ns to 1 ms is compared to the software-computed

ACF computed from the full bitstream (black curve). The theoretical ACF of a

single, isolated Gaussian input event (dashed curve) is also shown. Input

sequences (a) and (b) are comprised of Gaussian events with s¼20 ms (character-

istic decay time of 33.2 ms) while (c) is comprised of Gaussian events with

s¼200 ms (characteristic decay time of 332 ms). The input sequence in (a) is a

more densely populated than that of (b) while the input sequence density in

(b) and (c) are the same. The data collection time for (c) was 10� the duration of

(a) and (b).
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Note that the calculated ACF curves for Fig. 13(b) show more
fluctuations as compared to those seen in Fig. 13(a), which is a
result of the lower number of photons in the bitstream used to
calculate the ACF in Fig. 13(b). At longer timescales, the ACFs of
Fig. 13 have non-zero values due to the non-zero probability of
two Gaussian events having a given difference in time. The
structure observed at these longer times is due to the limited
record length of the bitstreams. As the record length is increased,
the long time behavior should approach that of uniform
white noise.

In the simulated FPGA implementation shown here, the ACF is
calculated at the full 100 ns resolution for 40 points over a 4-
decade time scale. Although each of the ACF points is calculated
exactly from the bitstream, having the full ACF would, of course,
be preferred. This would allow, for instance, a more precise value
of the ACF decay constant to be extracted from the data by
using curve fitting. Several schemes to optimize the ACF data
collection for different classes of experiments could be imple-
mented while still working within the limited resources of the
FPGA. Firstly, the distribution of the accumulators within the
FPGA can be rearranged in a different configuration so that
more data points could be taken around the characteristic decay
time of interest. Alternatively, the output data points from the
FPGA PAD could be changed from an absolute accumulation of
photon correlations for a specific time lag to a running average
over a wider time interval. The first option would require several
pre-compiled FPGA implementations, possibly one focusing the
accumulator resources on each time decade. The averaging alter-
native does allow for a single FPGA implementation to be used
over the course of the experiment but would necessarily incur a
trade-off between available FPGA resources and the number of
adjacent time lags to be averaged i.e. the precision of the ACF
output. If the photon flux is low and if the full 100 ns time
resolution is not needed, one could run the ACF accumulators
with a slower clock. Naturally, this would average over larger
time bins. Note that a slower clock will make the collection of
data for the ACF calculation is more efficient for low photon flux
data. The implementation of the ACF calculation described here is
optimum when the photon occupancy is about 0.5 in a given time
bin since the ACF accumulator sum will go as the occupancy
squared.

Region of interest ACF calculations on a CCD with small pixels
have been achieved on millisecond timescales [14,16] with more
recent attempts achieving log-scale, on-chip ACFs at 10 ms time-
scales [17]. This prototype of the FPGA PAD, however, allows 256
channels of real-time ACF processing down to 100 ns. Addition-
ally, because each frame is not read out individually, the required
data transfer rate for this operation is 4 Mb/s as opposed to
2.56 Gb/s required to gain the same information in post-
processing from the 16�16 prototype.

The required data transfer rate could be further reduced by
placing more of the long timescale ACF processing within the
FPGA as described above. Since this implementation uses less
than 20% of the FPGA resources, it would be possible to either add
level 3 processing or to increase the number of computed ACF
delays calculated in real-time. Choosing how to allocate FPGA
resources between long or short timescale calculations will
depend on the nature of the system under study. This partitioning
of resources will need to be optimized for the full scale 128�128
pixel PAD as well.
6. Future work

The FPGA PAD is at an early stage of development. An initial
prototype ASIC layer has been fabricated and will soon be tested
with an FPGA layer. Both of the clocking modes will be tested as
well as the speed of the front-end pixel design. Development of
the double-bonded diode layer as well as testing on mated diode-
ASIC hybrids of this prototype will follow.

Many challenges remain to develop a full-scale 128�128 tile.
Foremost among these are the physical interconnection of the
ASIC layer to the FPGA die, tiling a larger area multi-module
detector, and communication between the FPGA layers of the
different PAD tiles. Modifications to the current design will also
be necessary to adapt to a much larger 128�128 pixel array
which will use more of the intended Virtex7 FPGA Block RAM and
distributed resources.

Inter-communication between FPGAs is particularly important
for applications in which calculations are made using readings of
more than one pixel. An example of this is the Angular Cross
Correlation Function. Higher-order correlation functions and
subsequent post-processing have shown the potential to extricate
short-range order within disordered systems as exhibited in
glassy states [18]. The angular intensity cross correlation function
has been used to determine local order including motifs forbidden
in periodic crystalline structures [19]. The angular CCF, although
similar to the ACF, also has interesting properties that make it
more of a challenge to implement on the FPGA PAD. Unlike an ACF
where each pixel output is independent, the CCF has spatial
dependence and, as such, can tax the intercommunication proto-
cols between chips. Other potential applications of interest to be
developed for the FPGA PAD are real-time calibration and real-
time image processing algorithms such as the 2D FFT.
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