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Observation of theorized glass-to-liquid transitions between low-
density amorphous (LDA) and high-density amorphous (HDA)
water states had been stymied by rapid crystallization below the
homogeneous water nucleation temperature (∼235 K at 0.1 MPa).
We report optical and X-ray observations suggestive of glass-to-
liquid transitions in these states. Crack healing, indicative of liquid,
occurs when LDA ice transforms to cubic ice at 160 K, and when
HDA ice transforms to the LDA state at temperatures as low as 120 K.
X-ray diffraction study of the HDA to LDA transition clearly shows
the characteristics of a first-order transition. Study of the glass-to-
liquid transitions in nanoconfined aqueous solutions shows them to
be independent of the solute concentrations, suggesting that they
represent an intrinsic property of water. These findings support
theories that LDA and HDA ice are thermodynamically distinct
and that they are continuously connected to two different liquid
states of water.

glass-to-liquid transition | high-density amorphous ice | low-density
amorphous ice | quenched HDA | first-order phase transition

Water has glassy states, including low-density amorphous
(LDA) and high-density amorphous (HDA) ice (1–3). The

glass-to-liquid transition in these polyamorphic forms of ice is
the focus of theories proposed to explain anomalous properties
of supercooled water (4–8). Although supporting experimental
evidence exists (9–15), it remains controversial as the direct obser-
vation of a glass-to-liquid transition has been stymied by rapid
crystallization below the homogeneous nucleation temperature
(∼235 K at 0.1 MPa).
In general, glasses are nonergodic, noncrystalline solids, in

which atoms are fixed to their initial positions for macroscopi-
cally long periods of time (16). As is well known, when stress is
applied, glasses can be cracked. Above the glass transition tem-
perature, Tg, the ergodic liquid is restored, and the stress-induced
cracks in glasses can be healed by the diffusive motions of liquids.
Indeed, it has been shown that the crack-healing process is re-
producible and correlated with the glass transition temperatures,
independent of liquid fragility (17, 18).

Results
Bulk Water. In this study, crack healing is used to probe the
molecular mobility in cryogenic transitions between glassy states
of water or between glassy and crystalline states. Cracks do not
heal for a sample held within any particular cryogenic solid state,
indicating a low mobility in each of these states. Crack healing
observed during phase transformations requires a high molecular
mobility and is suggestive of an intermediate glass-to-liquid
transition in the pathway between solid states. Fig. 1 shows the
paths in a schematic phase diagram of water that were used to
form and probe LDA and HDA ice. To facilitate vitrification of
the bulk state of water, either NaK tartrate [sodium potassium
tartrate, 0.9 M; mole fraction (moles salt/total moles) of 0.016 or
hydration number R (moles H2O/moles salt) of 62] or NaCl
(sodium chloride, 1.5 M; mole fraction of 0.027 or R of 37) were

added. Although salt additives in water are known to perturb the
structure (19–23) and glass-forming properties (24, 25) of water,
insight on the thermodynamic properties of pure water has been
obtained from aqueous solutions (6, 26–28).
Fig. 2A shows crack healing observed during warming of a

NaK tartrate (0.9 M) aqueous solution prepared in the LDA
state. Cracks made by flexing the LDA sample in a plastic cap-
illary at liquid nitrogen temperature remain intact until 155 K.
Above 155 K, cracks begin to heal (Movie S1). In situ X-ray
diffraction (Fig. 2D) shows that the sample is in the LDA state
until 155 K, above which it transforms to cubic ice. Fig. 2 B and C
show crack healing observed during warming of 0.9 M NaK
tartrate (Fig. 2B) and 1.5 M NaCl (Fig. 2C) solutions prepared in
the HDA state (Movies S2–S5). In both cases, crack healing is
observed beginning at 120 K. In situ X-ray diffraction (Fig. 2 E–
G) shows that crack healing is correlated with the initiation of
the phase transition from the HDA to the LDA state. Note that
other studies have, instead, observed additional cracking occurring
upon phase transformation (29), likely due to higher heating
rates, lack of tube confinement which might suppress rapid
sample volume expansion, or different methods of sample
preparation (30–33).
Fig. 3 shows the time-resolved X-ray diffraction of a 1.5 M

NaCl solution undergoing a phase transformation from the HDA
to the LDA state at several fixed temperatures. Samples were
ramped from 80 K to either 120, 130 , or 140 K at the rate of 6 K/min.
X-ray diffraction data were collected immediately after reaching
the final temperatures. Fig. 3 A–C shows the time evolution of
the water diffuse diffraction (WDD, Fig. S2A) profiles of a 1.5 M
NaCl solution during the HDA to LDA transition at 120, 130,
and 140 K. The superposition of WDD profiles shows apparent
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isosbestic points. A singular value decomposition (SVD) analysis
reveals that the WDD profiles can be mostly reconstructed with
two major independent states (Supporting Information). This
result suggests that the intermediate states during the phase
transition can be expressed as a coexistence of high-density and
low-density states, consistent with a first-order phase transition
(29–31, 34–37). Note that the small-angle X-ray scattering
(SAXS) region (Q = 0.3–0.7 Å−1) in the WDD profiles is initially
low in the HDA state and gradually rises during the phase
transition, indicating the structural homogeneity of HDA ice
(38), increased density fluctuations during the conversion to
LDA, and the structural inhomogeneity of LDA ice (21, 22, 28).
This is consistent with an interpretation in which the low-density
state emerges within a high-density matrix during the HDA to
LDA transition (1).
Time evolution of the primary WDD peak position (Fig. 3D)

was further analyzed to investigate the characteristics of the
phase transition from an HDA to an LDA state. The primary
WDD peak position is mainly attributed to the O–O correlation
in water; hence, it reflects the density of amorphous water. HDA
is observed to transform to LDA at each fixed temperature but at
different rates. At 120 K the HDA to LDA conversion is still
progressing even after ∼2 h, at 130 K the transition is almost
complete in ∼ 1 h, and at 140 K the transition completes in less
than 20 min. The time evolution of the phase transition can be
fitted with an Avrami–Kolmogorov equation (1), which describes
nucleation and growth of a low-density state within a high-
density matrix. The Avrami–Kolmogorov fitting suggests that the
HDA state completely transforms to the LDA state at these fixed
temperatures given sufficient equilibration time (Supporting In-
formation). This result indicates that there is density discontinuity
between the high-density and low-density states in thermodynamic
equilibrium and supports the conclusion that the HDA to LDA

transition involves a first-order phase transition rather than a
structural relaxation.

Nanoconfined Water. The data shown above were collected from
bulk aqueous solutions. Further insight can be obtained from
observation of confined water (39). It has been shown that LDA
and HDA states of water can be formed inside the ∼2–4-nm
solvent channels that typically riddle protein crystals by cry-
ocooling at either ambient pressure (for LDA) or high pressure
(for HDA) (32) (Fig. 1 and Supporting Information). Although
nanoconfinement in protein crystals may shift phase boundaries
and change dynamics from that of bulk state of water, it has been
shown that the confined water undergoes the same phase tran-
sitions as bulk water upon warming, exhibiting HDA, LDA, cubic,
and hexagonal ice phases (32) (Supporting Information). Notably,
upon cryocooling, the formation of crystalline forms of ice tends
to be suppressed within the nanochannels of the crystal, favoring
instead the formation of the amorphous forms of ice. Therefore,
the concentration of chemical additives needed for water vitri-
fication in bulk solutions can be reduced or even eliminated.
Water dynamics can also be probed by monitoring changes to the
crystalline packing of the protein molecules which may occur
along with water phase transitions inside the crystals (40).
Fig. 4A shows the phase behavior of the LDA state of 0.9 M

NaK tartrate and 2.7 M glycerol solution (mole fraction of 0.058)
inside a protein crystal along with the resultant protein molec-
ular responses. Similar to that observed for the bulk 0.9 M NaK
tartrate solution (Fig. 2D), an initial LDA state of the aqueous
solution inside the protein crystal transforms to cubic ice when
warmed above 160 K (Fig. 4A, Inset). The protein crystallo-
graphic data show that the crystal unit cell parameters expand
isotropically with temperature when protein molecules are deep
cryocooled into the LDA state and then heated to 160 K. At higher
temperatures the crystallographic axes show divergence in the rate
of expansion. This anisotropic divergence indicates an onset of
rearrangement of the protein molecules inside the crystals, sug-
gesting that the molecules are imbedded in a flexible environment.
Fig. 4B shows the phase behavior of an initial HDA state of

0.9 M NaK tartrate solution inside a protein crystal and the re-
sultant protein molecular response. As for the bulk aqueous
solutions (Fig. 2 E and F), the HDA state transforms to LDA ice
when warmed above 120 K. The protein crystallographic data
show that the crystal unit cell parameters diverge in their expansion
rates above 120 K, and that the divergence is correlated with
the HDA to LDA transition. Fig. 4 C and D shows the effect of
chemical additives on the phase behavior of the HDA state upon
warming inside a protein crystal. As NaK tartrate concentration is
reduced to 0.45 M and again to 0 M, the phase transition shifts to
lower temperatures overall. However, the divergence in the unit
cell parameters is preserved and still correlates with the HDA to
LDA transition.

Discussion
We observe crack healing in bulk aqueous solutions and the
onset of molecular rearrangement in protein crystals when LDA
transforms to cubic ice, both of which require substantial
movement of the water molecules. This is consistent with,
although not proof of, a liquid-like component arising from the
LDA state. This is also consistent with previous reports that
LDA ice undergoes a glass-to-liquid transition before trans-
forming to a crystalline ice state (10, 11, 14). Similar crack
healing and molecular rearrangements are observed during the
HDA to LDA conversion. This result is consistent with the ex-
istence of a liquid-like component arising from the HDA state
during the HDA to LDA conversion. This result is also consis-
tent with calorimetric and volumetric studies that suggest the
existence of a glass-to-liquid transition of HDA ice before
transforming to LDA ice (13, 14). The possibility of a liquid-like

A B

Fig. 1. Phase diagram of noncrystalline water (adapted from ref. 7 with
permission from the PCCP Owner Societies) and preparation paths of LDA
and HDA. TM: melting temperature, TH: homogeneous nucleation temper-
ature, TX: crystallization temperature. Cooling paths are shown by dashed
blue lines and warming paths by red lines. (A) LDA ice can be induced by very
quickly cryocooling aqueous solutions directly in liquid nitrogen at ambient
pressure. Upon warming, LDA ice transforms to crystalline ice phases above
TX in “no man’s land,” where spontaneous water crystallization cannot be
avoided (Figs. S2A and S4A). Tg

LDA is the glass transition temperature of LDA
ice. Note that the LDA ice nanoconfined in a protein crystal is induced by this
path. (B) The HDA ice from both bulk and nanoconfined states of aqueous
solutions is induced by cryocooling aqueous solutions at hydrostatic high
pressure, 200 MPa. When pressure is released, HDA is metastable at ambient
pressure and at liquid nitrogen temperature. Upon warming, HDA first
transforms to LDA ice, and then to crystalline ice phases in no man’s land (Figs.
S2 B and C and S4 B and C). Tg

HDA is the glass transition temperature of HDA
ice (data from ref. 13). Note that the LDA ice of bulk aqueous solution is
formed by warming HDA ice at ambient pressure, because crystallization
could not be prevented in the dilute solutions upon cooling at ambient
pressure (Supporting Information).
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state is further supported by the observation that protein mole-
cules exhibit dynamical fluctuations even at 110 K during the
HDA to LDA transition (41). Note that, for the study of water in

the bulk state, addition of solutes to the water is necessary
to induce the LDA or HDA states without crystallization. On
the other hand, our study of water nanoconfined inside protein

A

B

C

D

F G

E

Fig. 2. Correlation between crack healing and phase transitions of LDA and HDA states upon warming. (A) Crack healing within the 0.9 M NaK tartrate
solution prepared in the LDA state is observed to begin just above 155 K. (B) The beginning of crack healing within the 0.9 M NaK tartrate solution prepared
in the HDA state is shifted to a lower temperature, 120 K. (C) Crack healing within the 1.5 M NaCl solution prepared in the HDA state is also observed around
120 K. (D–F) In situ X-ray diffraction profiles during warming of LDA and HDA states of aqueous solutions. (D) The LDA ice of the 0.9 M NaK tartrate solution
in A transforms to the cubic ice phase above 155 K (plotted in red). (E) The HDA state of the 0.9 M NaK tartrate solution in B transforms to LDA ice above
120 K (plotted in red). (F) The HDA state of 1.5 M NaCl solution in C transforms to LDA ice above 120 K (plotted in red). The peak around Q = 1.2 Å-1 is from
the polycarbonate capillary and is almost temperature invariant. (G) The position of the primary WDD peak is plotted for the data shown in D–F. The peak
position of the 0.9 M NaK tartrate solution prepared in the LDA state (black) varies little with temperature, whereas the HDA ice preparation of the 0.9 M NaK
tartrate solution (red), and the HDA ice of the 1.5 M NaCl solution (blue) show a marked change as they transform to LDA ice above 120 K. See Fig. S1 for the
extra features in the HDA–LDA transition of 1.5 M NaCl solution.

Kim et al. PNAS | September 22, 2015 | vol. 112 | no. 38 | 11767

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510256112/-/DCSupplemental/pnas.201510256SI.pdf?targetid=nameddest=SF1


crystals does not require the addition of solutes. Although com-
plications can be involved in the interpretations of aqueous so-
lutions and nanoconfined water, our interpretation is that the
glass-to-liquid transition of HDA state observed both in the aque-
ous solutions and in the nanoconfined water is due to the intrinsic
properties of water.
Time-resolved X-ray diffraction supports the suggestion that

the HDA–LDA transition involves a first-order phase transition.
Note that X-ray diffraction produces the same diffraction profile
with either a liquid or glassy state of water if the time-averaged
internal structures are the same. Hence, the observed first-order
phase transition is compatible with a coexisting liquid state of
water during the HDA–LDA transition if this liquid is the coun-
terpart of a glassy state of water.
Our results are consistent with the following phase behavior of

amorphous water at cryogenic temperatures: When the HDA
state is warmed at ambient pressure, it first transforms to a high-
density liquid (HDL) state above the glass transition tempe-
rature of the HDA state (Tg

HDA). This HDL is metastable at
ambient pressure and cryogenic temperatures, and must
transform to a more stable form of water. Above Tg

HDA but
below the glass transition temperature of LDA ice (Tg

LDA) (Fig. 1),
HDL does not crystallize but rather ends up transforming to an
LDA state. The time-resolved X-ray diffraction study suggests that
HDL either undergoes a nonequilibrium first-order phase transition
to LDA or it first undergoes a nonequilibrium first-order phase

transition to the liquid counterpart (low-density liquid: LDL) of
LDA, then the LDL transforms to LDA. If the latter scenario is
correct, our results suggest that the first-order phase transition
observed between the HDA and LDA is actually occurring be-
tween HDL and LDL, and furthermore the HDL–LDL tran-
sition of water at cryogenic temperatures might be directly
experimentally approachable during the HDA to LDA transition
at ambient pressure. We also want to mention that a liquid state
of water during the HDA–LDA transition would open a new
experimental regime to investigate water–protein interactions at
cryogenic temperatures, thereby providing insight into the physical
origin of water-mediated protein dynamics (42).
Note that the HDA ice that has been most widely studied is

prepared by pressure-induced amorphization of hexagonal ice at
77 K (43). Depending on the postannealing process, the HDA
ice can be further divided into the unannealed HDA (uHDA)
and the annealed or expanded HDA (eHDA) (2, 30). Upon
warming, uHDA directly transforms to LDA but eHDA first
undergoes a glass-to-liquid transition before transforming to
LDA (14). On the other hand, the HDA ice used for this study is
made by directly quenching normal liquid water to 77 K under
pressure (32, 33, 44). This HDA (named quenched HDA or
qHDA) shows a glass-to-liquid transition before transforming to
LDA. Further studies are needed to probe similarities and dif-
ferences between qHDA and the other forms of HDAs.

A B

C D

Fig. 3. Time-resolved X-ray diffraction study on the phase transformation of 1.5 M NaCl solution from the HDA to the LDA state at three fixed temperatures.
(A–C) Selected WDD profiles during the HDA to LDA transition at 120 K (26 profiles), 130 K (39 profiles), and 140 K (32 profiles). Blue arrows indicate the
trends for increasing time. Note that SAXS region (Q = 0.3–0.7 Å-1) rises when HDA transforms to the LDA state. Residuals between the experimental profiles and
SVD reconstructions are shown for two state reconstructions (red), three state reconstructions (blue, shifted down for visual clarity), and four state reconstructions
(green, shifted down for clarity). The peak around Q = 1.2 Å-1 is from the polycarbonate capillary. (D) Primary WDD peak positions over time when HDA samples
are warmed from 80 K at 6 K/min and then equilibrated at 120 K (red), 130 K (blue), and 140 K (green). The data fitted to Avrami–Kolmogorov equations (black
solid lines) show that the HDA state progresses to the LDA state (Q = 1.7–1.75 Å-1) at fixed temperatures (Table S1).
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Methods
Bulk aqueous solutions were held in polycarbonate capillaries and were
cryocooled to liquid nitrogen temperature (77 K) at high pressure (200 MPa)
to produce HDA ice. The bulk state of LDA ice was induced by annealing HDA
ice at 145 K at ambient pressure, then cooling to 77 K. Cracks were induced by
bending the capillaries in liquid nitrogen before loading into the X-ray ap-
paratus. Crack healing was observed by optical microscopy. In situ and time-
resolved X-ray diffraction data of bulk solutions were collected at the Cornell
High Energy Synchrotron Source (CHESS). To study water confined in protein
crystals, thaumatin crystals from Thaumatococcus daniellii were used. By
volume, a thaumatin crystal consists of 55–60% of water and 40–45% of
protein molecules. Protein crystals were cryocooled to 77 K at either ambient
pressure or high pressure (200 MPa), to induce LDA and HDA ice, respectively.

To obtain unit cell parameters, complete crystallographic data sets were
collected at CHESS and analyzed. Further details of methods are available in
the Supporting Information.
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Supporting Information
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Experimental Details for the Study on the Aqueous
Solutions in Bulk State
Sample Preparation. NaK tartrate (0.9 M) and NaCl (1.5 M)
solutions were used for the study on the bulk state of water. The
solution was inserted into a polycarbonate capillary having a
length of 15 mm, an inner diameter of 200 μm, and a wall thickness
of 50 μm.

Sample Cryocooling. To induce HDA ice, capillary samples con-
taining 0.9 M NaK tartrate or 1.5 M NaCl solution were cry-
ocooled at high pressure as described in Kim et al. (33). Briefly,
samples were loaded into the high-pressure cryocooling appa-
ratus, which was then pressurized with helium gas to 200 MPa at
ambient temperature. Five minutes later, while still at high
pressure, the samples were dropped into a zone at liquid-nitrogen
temperature. Helium pressure was then released. Thereafter
samples were handled and stored at ambient pressure and at
liquid nitrogen temperature before crack-healing observation and
X-ray diffraction measurements.
To induce LDA ice, the HDA ice produced by high-pressure

cryocooling was annealed at 145 K for 1 h and cooled back to 80 K
at ambient pressure. The formation of LDA ice was confirmed by
X-ray diffraction. Note that LDA ice could not be obtained in the
bulk aqueous solution by directly cryocooling at ambient pressure
(instead, hexagonal ice was always induced).

Observation of Crack Healing. To induce cracks inside LDA and
HDA ice, mechanical stress was applied to the capillary sample by
bending it with forceps in liquid nitrogen. Then the sample was
loaded on a goniometer on an X-ray beamline (see the next
section for details) under a cryogenic N2 gas stream at 80 K
(Cryostream 700 series cryocooler from Oxford Cryosystems).
A cryotong (Hampton Research) was used to prevent sample
warming during sample loading.
The temperature of a capillary sample was increased at the rate

of 6 K/min. At each desired temperature (5-K steps, starting from
80 K), image snapshots were taken through a beamline optical
microscope. At the same time, in situ X-ray diffraction data were
collected to probe water phases, as described in the next section.
Crack healing was observed when LDA transformed to cubic

ice and HDA transformed to LDA upon warming (see Fig. 2 in
the main text and Movies S1–S5). Crack healing progressed when
HDA transformed to LDA at fixed temperatures, suggesting that
crack healing is related to the phase transition of amorphous
water rather than temperature changes (Fig. S1).

X-Ray Diffraction Measurement. X-ray diffraction data were col-
lected at the macromolecular crystallography stations A1 (λ =
0.9770 Å, Area Detector Systems Corporation (ADSC) Quan-
tum 210 CCD detector, beam size of 100 μm) and F1 (λ = 0.9179 Å,
ADSC Quantum 270 CCD detector, beam size of 100 μm) at
CHESS. X-ray diffraction data from the crack-induced samples
were collected with temperature steps of 5 K. The distance be-
tween the sample and the detector was 200 mm and the X-ray
exposure time was 10 s.
A time-resolved X-ray study was performed during the HDA–

LDA transition of a 1.5 M NaCl solution at fixed temperatures.
Three HDA samples were first loaded at 80 K onto the beamline
and then warmed to 120, 130, and 140 K, respectively, at the
maximum warming rate (6 K/min). Immediately after reaching
the target temperature, X-ray diffraction data were collected.
The sample-to-detector distance was 200 mm and the X-ray

exposure time was 3 s. Including detector readout and image
processing time, 10 X-ray diffraction images were recorded per
minute. A total of 1,135 images were collected at 120 K (∼2 h),
549 images at 130 K (∼1 h), and 203 images at 140 K (∼20 min).
The magnitude of the scattering vector Q is given by Q =

(4πsin(θ))/λ, where λ is the X-ray wavelength and 2θ is the angle
between the incident beam and the diffracted X-rays. The
corresponding d spacing in real space is given by d = 2π/Q.
X-ray diffraction images of aqueous solutions in the bulk state

during warming are shown in Fig. S2. Note that aqueous solu-
tions in the bulk state undergo the same phase transitions from
HDA to LDA, cubic, and hexagonal ice as pure bulk water
(11, 34, 45).

X-Ray Data Analysis: Data Processing. The X-ray diffraction data
were azimuthally averaged as a function of Q. The sample-to-
detector distance was calibrated using the reported peak positions
of hexagonal ice (46). Peak positions for the broad diffraction of
LDA and HDA ice from the 0.9 M NaK tartrate and 1.5 M NaCl
solutions were determined by fitting a series of three Voigt
functions (one each for the diffuse peak from the polycarbonate
capillary, the primary amorphous ice peak, and a secondary ice
peak) with a quadratic background.
The processed water WDD profiles from X-ray diffraction

images are shown in Fig. S2.

X-Ray Data Analysis: Time-Resolved Study. The primary WDD peak
position in the time-resolved study was fitted to an Avrami–
Kolmogorov equation (1):

Pðt, TÞ=A  exp
�
-ðt=τðTÞÞn�+P∞,

where P(t,T) is the primary WDD peak position, t is time, τ(T) is
a temperature (T)-dependent relaxation time, n is a characteris-
tic parameter which reflects the nature of the transformation,
and P∞ is the primary WDD peak position when t → ∞.
The fitting parameters were determined usingMATLABwith a

95% confidence bound; they can be found in Table S1.
The fact that P∞ is the same as the primary WDD peak po-

sition of LDA ice (Q = 1.70–1.75 Å-1) suggests that the HDA
state completely transforms to the LDA state at these fixed
temperatures if the HDA state is equilibrated long enough. This
is characteristic of a first-order phase transition.
Assuming that the transition is a thermally activated process,

the activation energy barrier ΔE can be determined using the
Arrhenius equation

τðTÞ= τ∞ exp½ΔE=RT�,

where R is the gas constant and τ∞ is the relaxation time when
T → ∞. The estimated activation energy ΔE is ∼ 40 kJ mol−1.

X-Ray Data Analysis: SVD. If the HDA-to-LDA transition is a first-
order phase transition, the WDD profiles of the intermediate
states should be expressed as a superposition of two independent
states, i.e., initial (HDA) and final (LDA) states.
SVD analysis was performed to obtain the number of in-

dependent states needed to reconstruct the WDD profiles. Fig.
S3 shows the results of SVD analysis on the WDD profiles of 1.5 M
NaCl solution at 130 K. It is apparent that the experimental
profiles can be mostly reconstructed using the two major in-
dependent states from the SVD analysis. One or two additional
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minor states were detected. We estimate that the additional
minor states are due to the structural relaxation of amorphous
water upon warming (1, 47), and during the glass-to-liquid
transition.

Experimental Details for the Study on the Aqueous
Solutions Confined in Protein Crystals
Protein Crystallization and Crystal Handling. The protein crystalli-
zation method was modified from that described by Ko et al. (48)
and was carried out as described by Kim et al. (33). Lyophilized
thaumatin powder from T. daniellii (catalog no. T7638, Sigma)
was used for crystallization without further purification. Crystals
were grown at 20 °C by the hanging-drop method, with 25 mg/mL
thaumatin solution in 50 mM Hepes buffer at pH 7 and a crystal-
lization solution containing 0.9 M sodium potassium tartrate (NaK
tartrate) as a precipitant. The crystal space group was determined to
be P41212 (a = b = ∼58 Å, c = ∼150 Å), having a solvent content of
55–60% by volume.
To adjust solvent concentrations in protein crystals, the fully

grown thaumatin crystals were equilibrated with 0.9 M, 0.45 M
NaK tartrate solutions, and with deionized water (0 M NaK
tartrate solution). To reduce osmotic shock, crystals were grad-
ually transferred to the target concentration in 0.1-M steps.
Note that equilibrating protein crystals in deionized water does

not necessarily remove all of the chemical solutes in protein
crystals. It is still possible that some solute molecules remain in
the protein crystals by tightly binding to protein molecules.
However, these tightly binding solutes are recorded in the Bragg
diffraction in X-ray measurement in the same way that highly
ordered water molecules around protein molecules are recorded
in the Bragg diffraction. Equilibrating protein crystals in deion-
ized water ensures that there are no solutes freely floating in
the solvent channels inside the protein crystals. The solute-free,
disordered water molecules in the solvent channel are responsible
for the WDD in X-ray diffraction measurement.

Crystal Cryocooling. Before cryocooling of crystals, liquid sur-
rounding the crystals was carefully removed during crystal coating
with a mineral oil. The WDD was thus produced almost entirely
from the solution inside the crystal. The oil coating also prevented
crystal dehydration during cryocooling. To induce HDA ice inside
protein crystals, protein crystals containing 0 M to 0.9 M NaK
tartrate were cryocooled under high pressure (200MPa) (33) as in
the bulk state of aqueous solution. LDA ice was induced by di-
rectly plunging a protein crystal into liquid nitrogen at ambient
pressure rather than annealing the pressure-induced HDA ice to
145 K at ambient pressure. This different procedure was because
conversion from HDA to LDA seemed to take a much longer
time in a protein crystal. The crystals containing only NaK tartrate
could not be easily cryocooled to produce LDA ice at ambient
pressure (instead, cubic or hexagonal ice formed). Therefore,

2.7 M glycerol was added to the crystal (0.9 M NaK tartrate) to
suppress crystallization upon cryocooling.

X-Ray Diffraction Data Collection. The crystallographic X-ray dif-
fraction data were collected at the macromolecular crystallog-
raphy stations F1 (λ = 0.9179 Å, ADSC Quantum 270 CCD
detector, beam size of 100 μm), and F2 (λ = 0.9795 Å, ADSC
Quantum 210 CCD detector, beam size of 150 μm) at CHESS.
The cryocooled crystals were transferred from liquid nitrogen to
a goniometer without sample warming. During data collection,
the sample temperature, ranging from 80 to 160 K, was con-
trolled by a Cryostream 700 series cryocooler (Oxford Cry-
osystems). The sample temperature was raised at the rate of
6 K/min. After reaching a desired temperature, samples were
held at the temperature for 3–5 min. The X-ray diffraction data
of the protein crystals were collected with temperature steps
from 3 to 10 K. At each temperature, two types of data sets were
collected. First, to extract the WDD profile, a diffraction image
was obtained with 10–15-s exposure time and an oscillation angle
of 1°. Then, to obtain unit cell parameters, a complete data set
was collected covering 60–90° of crystal rotation. The X-ray exposure
time for each frame was 1 s with an oscillation angle of 1°. The data
collection parameters were the same for all of the complete datasets
from a single crystal.
X-ray diffraction images of protein crystals during warming are

shown in Fig. S4. Note that the aqueous solutions confined in
protein crystals show the same phase transitions (from HDA to
LDA, cubic, and hexagonal ice) as the aqueous solutions in the
bulk state (Fig. S2).

X-Ray Data Analysis: WDD from Protein Crystals. Each diffraction
pattern from a protein crystal consists of Bragg peaks from the
protein molecules in the crystal plus diffuse diffraction rings
arising from the oil external to the crystal and water internal to the
crystal (Fig. S4). The underlying diffuse diffraction from the
diffraction image was isolated from the Bragg spots by applying a
custom polar coordinate median filter to the intensity values of
the image. The sample-to-detector distance was calibrated based
on the known Bragg peaks of hexagonal ice (46). To determine
the position of the WDD peak, the median-filtered diffuse
scattering curves were fit to a series of three Voigt functions plus
linear background: one Voigt function at the position of the oil
scattering peak, one at the main WDD peak, and a third function
at the secondary WDD peak.
The extracted WDD profiles from protein crystallographic

images are shown in Fig. S4.

X-Ray Data Analysis: Crystal Bragg Diffraction. To obtain unit-cell
parameters, the complete thaumatin data sets were indexed,
integrated, postrefined, and scaled with HKL2000 (49).
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Fig. S1. Progression of crack healing during HDA to LDA transitions at fixed temperatures. (A) NaCl solution (1.5 M) was cryocooled at 200 MPa to induce HDA
ice. When warmed, HDA ice transforms to LDA ice. At each temperature, a sample image snapshot was taken before X-ray measurement, except for 125 and
130 K (arrows). At 125 and 130 K, two sample image snapshots were taken, before and after X-ray measurement. Note that the primary WDD peak positions at
125 and 130 K are slightly shifted down to lower Q value, from the overall transition profile, due to progression of the HDA to LDA transition during the longer
holding time at these temperatures (see Fig. 3 in the main text). (B and C) Crack healing at 125 and 130 K before and after X-ray measurement. Cracks are
progressively healed at these fixed temperatures.

Fig. S2. X-ray diffraction images and corresponding WDD profiles of aqueous solutions in the bulk state during warming. The innermost diffraction ring is
from the polycarbonate capillary, and its position is almost temperature invariant. The second innermost diffraction ring is the primary WDD peak of aqueous
solution and changes most dramatically during the water phase transition. (A and B) Phase behavior of the LDA state of 0.9 M NaK tartrate solution during
warming. It stays in the LDA state until 160 K and then transforms to cubic and hexagonal ice. (C and D) Phase behavior of the HDA state of 0.9 M NaK tartrate
solution during warming. It transforms to LDA, cubic, and hexagonal phases. (E and F) Phase behavior of the HDA state of 1.5 M NaCl solution during warming.
It transforms to LDA, cubic, and hexagonal phases.
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Fig. S3. SVD analysis on the WDD profiles of 1.5 M NaCl solution at 130 K. (A) Thirty-nine sequential experimental WDD profiles show a phase transition from
HDA to LDA state at 130 K. (B) The first five SVD independent states (i.e., state vectors). Each state is shifted up by 0.2 for visual clarity. Note that there are
numerous different ways to choose the basis states; each state is purely mathematical and does not necessarily reflect a physically meaningful water phase.
(C) The mean absolute values of the coefficients for the SVD states show that there are two major states and one or two additional minor states above noise
level. (D–F) Reconstruction of WDD profiles with two, three, and four primary SVD states, respectively. The residual is calculated by subtracting reconstructed
profiles from experimental profiles.
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Fig. S4. X-ray diffraction images of protein crystals and extracted WDD profiles of aqueous solution inside protein crystals. The innermost diffraction ring is
from a mineral oil, and its position is almost temperature invariant. The second innermost diffraction ring is the primary WDD peak of aqueous solution and
changes most dramatically during water phase transitions. (A and B) Phase behavior of the LDA state of 0.9 M NaK tartrate and 2.7 M glycerol solution inside a
protein crystal during warming. It stays in the LDA state until 160 K and then transforms to cubic and hexagonal ice. (C and D) Phase behavior of the HDA state
of 0.9 M NaK tartrate solution inside a protein crystal during warming. It transforms to LDA, cubic, and hexagonal ice phases. (E and F) Phase behavior of the
HDA state of pure water (0 M NaK tartrate) inside a protein crystal during warming. It transforms to LDA, cubic, and hexagonal ice phases.
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Table S1. Fitting parameters of the time-resolved X-ray study

P(t,T) = A exp[-(t/τ(T))n] + P∞

Temperature, K A, Å-1 τ(T), s n P∞, Å
-1

120 0.317 ± 0.053 (2.21 ± 0.69) × 104 0.738 ± 0.026 1.740 ± 0.053
130 0.310 ± 0.005 207.60 ± 5.20 0.715 ± 0.014 1.740 ± 0.005
140 0.219 ± 0.006 72.13 ± 2.81 0.945 ± 0.037 1.734 ± 0.005

Movie S1. Crack healing in the LDA state of a 0.9 M NaK tartrate solution in a polycarbonate capillary (o.d. = 300 μm, i.d.= 200 μm) during the phase
transition of the LDA state to cubic ice. (A) Cracks induced in the sample. The sample is rotated by 360° at 90 K to show cracks induced inside. The frame rate
used for recording is 7.5 frames per second (fps) and video playback speed is 15 fps. (B) Crack healing inside the LDA sample during warming (from 80 to 170 K).
Note that crack healing occurs noticeably above 155 K. The image frames are recorded at 5-K increments, and video playback speed is 2 fps.

Movie S1

Kim et al. www.pnas.org/cgi/content/short/1510256112 6 of 10

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1510256112/video-1
www.pnas.org/cgi/content/short/1510256112


Movie S2. Crack healing in the HDA state of a 0.9 M NaK tartrate solution in a polycarbonate capillary during the transition from the HDA to the LDA state.
(A) Cracks induced in the sample. The sample is rotated by 360° at 85 K to show cracks induced inside. The frame rate used for recording is 7.5 fps and video
playback speed is 15 fps. (B) Crack healing inside the HDA sample during warming (from 85 to 160 K). Note that crack healing occurs noticeably above 120 K,
which is 35 K lower than in the LDA state (Movie S1). The image frames are recorded every 5 K, and video playback speed is 2 fps. (C) Cracks in the sample in the
middle of warming. The sample is rotated by 360° at 135 K to show crack healing inside. Note that the cracks observed at 85 K are considerably healed. (D) The
sample after warming. The sample is rotated by 360° at 160 K to show crack healing inside. Note that the cracks are completely healed.

Movie S2
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Movie S3. Crack healing in the HDA state of a 0.9 M NaK tartrate solution in a polycarbonate capillary during the phase transition of HDA to LDA state
(a different sample from that of Movie S2). (A) Cracks induced in the sample. The sample is rotated by 360° at 110 K to show cracks induced inside. The frame
rate used for recording is 7.5 fps and video playback speed is 15 fps. (B) The HDA sample is continuously recorded during warming from 110 to 150 K. Note that
cracks heal completely during warming. The frame rate used for recording is 7.5 fps and video playback speed is 240 fps. (C) The sample after warming. The
sample is rotated by 360° at 150 K.

Movie S3
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Movie S4. Crack healing in the HDA state of 1.5 M NaCl solution in a polycarbonate capillary. (A) The sample is rotated by 360° at 80 K to show cracks induced
inside. The frame rate used for recording is 7.5 fps and video playback speed is 15 fps. (B) Crack healing inside the HDA sample during warming (from 80 to
160 K). Note that noticeable crack healing occurs above 115 K. The image frames are recorded every 5 K, and video playback speed is 2 fps. (C) The sample after
warming. The sample is rotated by 360° at 160 K to show crack healing inside. Note that the cracks are completely healed.

Movie S4
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Movie S5. Crack healing in the HDA state of 1.5 M NaCl solution in a polycarbonate capillary during warming from 80 to 160 K (a different sample from that
of Movie S4). Note that crack healing occurs noticeably above 120 K. The image frames are recorded every 5 K, and video playback speed is 2 fps.

Movie S5
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